13 research outputs found

    Contribution of fishery discards to the diet of the Black‑browed albatross (Thalassarche melanophris) during the non‑breeding season: an assessment through stable isotope analysis

    Get PDF
    Black-browed albatrosses (Thalassarche melanophris) disperse over the Argentinean Continental Shelf and neighboring waters during their non-breeding season. It is one of the most frequent seabirds attending fishing vessels and also the most common Procellariform in the bycatch of longliners and trawlers in the area. Understanding the use of fishery discards by this species is an important issue when assessing the potential effect of strategic discard management in decreasing the abundance, interactions, and mitigating mortality. In the present study, we analyzed carbon and nitrogen stable isotope compositions in the blood of Black-browed albatrosses to assess the relative contribution of discards from different fisheries to the diet of this species in winter. Samples were obtained in winter 2011 from fishing vessels operating between 41–43°S and 57–59°W. No sex differences in δ13C and δ15N were observed. Results indicate that during their nonbreeding season, isotopic signatures of Black-browed albatrosses are closer to discards and offal generated by fisheries and in particular by trawlers. The large fishing effort of trawl fisheries in Argentina highlights the urgency of an exhaustive analysis to find practical and effective ways to reduce the number of seabirds attending trawlers.Fil: Mariano y Jelicich, Rocío. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Marinas y Costeras. Universidad Nacional de Mar del Plata. Facultad de Ciencia Exactas y Naturales. Instituto de Investigaciones Marinas y Costeras; ArgentinaFil: Copello, Sofía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Marinas y Costeras. Universidad Nacional de Mar del Plata. Facultad de Ciencia Exactas y Naturales. Instituto de Investigaciones Marinas y Costeras; ArgentinaFil: Seco Pon, Juan Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Marinas y Costeras. Universidad Nacional de Mar del Plata. Facultad de Ciencia Exactas y Naturales. Instituto de Investigaciones Marinas y Costeras; ArgentinaFil: Favero, Marco. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Marinas y Costeras. Universidad Nacional de Mar del Plata. Facultad de Ciencia Exactas y Naturales. Instituto de Investigaciones Marinas y Costeras; Argentin

    International regulatory responses to global challenges in marine pollution and climate change

    No full text
    Marine pollution, also referred to as \u27pollution of the marine environment\u27, may occur as a result of different activities. Examples are land-based activities, vessel-related activitiese, dumping at sea, atmospheric and offshore hydrocarbon exploration, seabed mining, and so on. As discussed in Chapter 4, these types of marine pollution are often transboundary in nature and are harmful to human health and marine ecosystem. Similarly, climate change is a global issue involving the interests of all States. The Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC), finalized and published in 2014, has further confirmed the existence of global warming when compared with the previous IPCC reports. It indicates that climate change has negatively affected natural and human systems on all continents and across the oceans, and asserts that 280substantial and sustained reduction of greenhouse gas (GHG) emissions would contribute to the tackling of climate change. 1 International issues need international responses. Both the marine pollution and climate change are issues with international dimensions, and thus require the global regulation by the international community

    Feeding and foraging ecology of Trindade petrels Pterodroma arminjoniana during the breeding period in the South Atlantic Ocean

    No full text
    Seabirds breeding in tropical environments experience high energetic demands, when foraging in an oligotrophic environment. The globally threatened Trindade petrel Pterodroma arminjoniana has its largest colony in Trindade Island (20°30′S–29°19′W) inside the oligotrophic South Atlantic Subtropical Gyre. Diet sampling methods, geolocator tracking and stable isotope analysis were used to describe its diet, compare foraging trips and distributions, and assess temporal variations in the trophic niche throughout the breeding period. Diet consisted mainly of squid and fish. The high species diversity and wide range of prey sizes consumed suggests the use of multiple foraging techniques. Stable isotope mixing models confirm that Trindade petrels rely mainly on squid throughout the breeding period. Its broad isotopic niche seems to reflect both a diverse diet and foraging range, since birds can reach up to 3335 km from the colony. Isotopic niche showed limited variation even in an 8-year interval, apparently due to oceanographic stability, although changes in the isotopic niche have demonstrated an adjustment to different conditions in different seasons. Petrels change foraging areas and prey during the breeding period: pre-incubating birds use more productive areas west of Trindade Island and obtain low trophic position prey; incubating petrels perform longer trips southward to consume prey of high trophic position; and chick-rearing petrels use areas around the island. These results demonstrate that to deal with high demand breeding in a colony surrounded by oligotrophic waters, Trindade petrels need to explore wide foraging areas and utilize a diverse diet, besides adjusting trophic niche according to breeding stage
    corecore