1,228 research outputs found
Surface melting of the vortex lattice
We discuss the effect of an (ab)-surface on the melting transition of the
pancake-vortex lattice in a layered superconductor within a density functional
theory approach. Both discontinuous and continuous surface melting are
predicted for this system, although the latter scenario occupies the major part
of the low-field phase diagram. The formation of a quasi-liquid layer below the
bulk melting temperature inhibits the appearance of a superheated solid phase,
yielding an asymmetric hysteretic behavior which has been seen in experiments.Comment: 4 pages, 3 figure
Surface Melting of the Vortex Lattice in Layered Superconductors: Density Functional Theory
We study the effects of an -surface on the vortex-solid to vortex-liquid
transition in layered superconductors in the limit of vanishing inter-layer
Josephson coupling. We derive the interaction between pancake vortices in a
semi-infinite sample and adapt the density functional theory of freezing to
this system. We obtain an effective one-component order-parameter theory which
can be used to describe the effects of the surface on vortex-lattice melting.
Due to the absence of protecting layers in the neighbourhood of the surface,
the vortex lattice formed near the surface is more susceptible to thermal
fluctuations. Depending on the value of the magnetic field, we predict either a
continuous or a discontinuous surface melting transition. For intermediate
values of the magnetic field, the surface melts continuously, assisting the
formation of the liquid phase and suppressing hysteresis above the melting
transition, a prediction consistent with experimental results. For very low and
very high magnetic fields, the surface melts discontinuously. The two different
surface melting scenarios are separated by two surface multicritical points,
which we locate on the melting line.Comment: 16 pages, 12 figure
Dissociation of vortex stacks into fractional-flux vortices
We discuss the zero field superconducting phase transition in a finite system
of magnetically coupled superconducting layers. Transverse screening is
modified by the presence of other layers resulting in topological excitations
with fractional flux. Vortex stacks trapping a full flux and present at any
finite temperature undergo an evaporation transition which corresponds to the
depairing of fractional-flux vortices in individual layers. We propose an
experiment with a bi-layer system allowing us to identify the dissociation of
bound vortex molecules.Comment: 4 pages, 1 figure; revised version, to appear in Phys. Rev. Let
The ISCIP Analyst, Volume II, Issue 14
This repository item contains a single issue of The ISCIP Analyst, an analytical review journal published from 1996 to 2010 by the Boston University Institute for the Study of Conflict, Ideology, and Policy
The ISCIP Analyst, Volume II, Issue 15
This repository item contains a single issue of The ISCIP Analyst, an analytical review journal published from 1996 to 2010 by the Boston University Institute for the Study of Conflict, Ideology, and Policy
The ISCIP Analyst, Volume II, Issue 3
This repository item contains a single issue of The ISCIP Analyst, an analytical review journal published from 1996 to 2010 by the Boston University Institute for the Study of Conflict, Ideology, and Policy
Density functional theory of vortex lattice melting in layered superconductors: a mean-field--substrate approach
We study the melting of the pancake vortex lattice in a layered
superconductor in the limit of vanishing Josephson coupling. Our approach
combines the methodology of a recently proposed mean-field substrate model for
such systems with the classical density functional theory of freezing. We
derive a free-energy functional in terms of a scalar order-parameter profile
and use it to derive a simple formula describing the temperature dependence of
the melting field. Our theoretical predictions are in good agreement with
simulation data. The theoretical framework proposed is thermodynamically
consistent and thus capable of describing the negative magnetization jump
obtained in experiments. Such consistency is demonstrated by showing the
equivalence of our expression for the density discontinuity at the transition
with the corresponding Clausius-Clapeyron relation.Comment: 11 pages, 4 figure
The ISCIP Analyst, Volume II, Issue 5
This repository item contains a single issue of The ISCIP Analyst, an analytical review journal published from 1996 to 2010 by the Boston University Institute for the Study of Conflict, Ideology, and Policy
Relationship between fatty liver and glucose metabolism: A cross-sectional study in 571 obese children
BACKGROUND AND AIMS: Early onset type 2 diabetes mellitus (T2DM) is associated with obesity, insulin resistance and impaired beta-cell function. Non-alcoholic fatty liver disease (NAFLD) may be an independent risk factor for T2DM. We investigated the relationship between NAFLD and glucose metabolism in a large sample of obese children. METHODS AND RESULTS: A total of 571 obese children (57% males and 43% females) aged 8-18 years were consecutively studied at a tertiary care centre specialised in paediatric obesity. Liver ultrasonography was used to diagnose NAFLD after exclusion of hepatitis B and C and alcohol consumption. Oral-glucose tolerance testing (OGTT) was performed; insulin sensitivity was evaluated by using the insulin sensitivity index (ISI) and beta-cell function by using the ratio between the incremental areas under the curve (AUC) of insulin and glucose (incAUCins/incAUCglu). A total of 41% of the obese children had NAFLD. Impaired glucose tolerance or T2DM was present in 25% of the children with NAFLD versus 8% of those without it (p<0.001). Children with NAFLD had higher body mass index (BMI), fasting glucose, 120-min OGTT glucose, incAUCins/incAUCglu and lower ISI as compared with children without NAFLD (p</=0.002). At bootstrapped multivariable median regression analysis controlling for gender, age, pubertal status and BMI, NAFLD was an independent predictor of 120-min OGTT glucose and ISI, but not of incAUCins/incAUCglu. Similar findings were obtained using continuous liver steatosis as the predictor, instead of dichotomous NAFLD. CONCLUSION: NAFLD was present in 41% of our obese children and was associated with higher insulin resistance, but not with impaired beta-cell function
Development of interconnected silicon micro-evaporators for the on-detector electronics cooling of the future ITS detector in the ALICE experiment at LHC
This paper was presented at the 4th Micro and Nano Flows Conference (MNF2014), which was held at University College, London, UK. The conference was organised by Brunel University and supported by the Italian Union of Thermofluiddynamics, IPEM, the Process Intensification Network, the Institution of Mechanical Engineers, the Heat Transfer Society, HEXAG - the Heat Exchange Action Group, and the Energy Institute, ASME Press, LCN London Centre for Nanotechnology, UCL University College London, UCL Engineering, the International NanoScience Community, www.nanopaprika.eu.The design of the future High Energy Physics (HEP) particle detectors for the upgrade of the LHC (Large Hadron Collider) experiments at CERN (European Organization for Nuclear Research) is pushing technological frontiers to the limit trying to reach unprecedented accuracy in particles identification and particle production dynamics in ultra-relativistic hadron collisions. The thermal management of the on-detector electronics and the development of low mass integrated cooling systems have become a crucial task in the design of silicon tracking detectors for HEP applications. In this paper, we present a novel concept of low mass interconnected silicon microchannel devices for the future Inner Tracking System of the ALICE (A Large Ion Collider Experiment) detector at LHC. This innovative design achieves the requirements of the detector while minimizing the total material budget
- …
