18 research outputs found
Association of kidney disease measures with risk of renal function worsening in patients with type 1 diabetes
Background: Albuminuria has been classically considered a marker of kidney damage progression in diabetic patients and it is routinely assessed to monitor kidney function. However, the role of a mild GFR reduction on the development of stage 653 CKD has been less explored in type 1 diabetes mellitus (T1DM) patients. Aim of the present study was to evaluate the prognostic role of kidney disease measures, namely albuminuria and reduced GFR, on the development of stage 653 CKD in a large cohort of patients affected by T1DM. Methods: A total of 4284 patients affected by T1DM followed-up at 76 diabetes centers participating to the Italian Association of Clinical Diabetologists (Associazione Medici Diabetologi, AMD) initiative constitutes the study population. Urinary albumin excretion (ACR) and estimated GFR (eGFR) were retrieved and analyzed. The incidence of stage 653 CKD (eGFR < 60 mL/min/1.73 m2) or eGFR reduction > 30% from baseline was evaluated. Results: The mean estimated GFR was 98 \ub1 17 mL/min/1.73m2 and the proportion of patients with albuminuria was 15.3% (n = 654) at baseline. About 8% (n = 337) of patients developed one of the two renal endpoints during the 4-year follow-up period. Age, albuminuria (micro or macro) and baseline eGFR < 90 ml/min/m2 were independent risk factors for stage 653 CKD and renal function worsening. When compared to patients with eGFR > 90 ml/min/1.73m2 and normoalbuminuria, those with albuminuria at baseline had a 1.69 greater risk of reaching stage 3 CKD, while patients with mild eGFR reduction (i.e. eGFR between 90 and 60 mL/min/1.73 m2) show a 3.81 greater risk that rose to 8.24 for those patients with albuminuria and mild eGFR reduction at baseline. Conclusions: Albuminuria and eGFR reduction represent independent risk factors for incident stage 653 CKD in T1DM patients. The simultaneous occurrence of reduced eGFR and albuminuria have a synergistic effect on renal function worsening
Interplay of tensor correlations and vibrational coupling for nuclear single-particle states
In this contribution we introduce, for the first time, a fully microscopic approach to particle-vibration coupling (PVC) based on the use of the Skyrme effective interactions. The capability of these forces to describe single-particle states in atomic nuclei, is a longstanding issue; it is certainly clear that the fragmentation of the single-particle strength lies beyond any mean field framework. After describing the formalism on which our microscopic approach is based, we discuss few preliminary results for 40Ca and 208Pb. Some perspectives are presented
Effect of the particle-vibration coupling on single-particle states : a consistent study within the Skyrme framework
We discuss calculations of single-particle states in magic nuclei, performed withis the particle-vibration coupling (PVC) approach by using consistently the Skyrme effective interaction. The vibrations are calculated within fully self-consistent random-phase approximation and the whole interaction is also used in the PVC vertex. Our main emphasis is therefore the discussion of our results in comparison with those in which some appproximation is made. The perspectives for improving current density functional theory (DFT) calculations are also addressed
Pairing correlations in nuclei : bare, induced and effective interactions
The bare nucleon\u2013nucleon interaction is essential for the production of pair correlations in nuclei, but the induced interaction due to phonon exchange also contributes. In this paper, we shall present examples of the interplay between these two sources of pairing interaction in the case of finite nuclei and of the inner crust of neutron stars