3,219 research outputs found
Iterative Linearized Density Matrix Propagation for Modeling Coherent Energy Transfer in Photosynthetic Light Harvesting
We present results of calculations [1] that employ a new mixed quantum classical iterative density matrix propagation approach (ILDM , or so called Is‐Landmap) [2] to explore the survival of coherence in different photo synthetic models. Our model studies confirm the long lived quantum coherence , while conventional theoretical tools (such as Redfield equation) fail to describe these phenomenon [3,4]. Our ILDM method is a numerical exactly propagation scheme and can be served as a bench mark calculation tools[2]. Result get from ILDM and from other recent methods have been compared and show agreement with each other[4,5]. Long lived coherence plateau has been attribute to the shift of harmonic potential due to the system bath interaction, and the harvesting efficiency is a balance between the coherence and dissipation[1]. We use this approach to investigate the excitation energy transfer dynamics in various light harvesting complex include Fenna‐Matthews‐Olsen light harvesting complex[1] and Cryptophyte Phycocyanin 645 [6].
[1] P.Huo and D.F.Coker ,J. Chem. Phys. 133, 184108 (2010) . [2] E.R. Dunkel, S. Bonella, and D.F. Coker, J. Chem. Phys. 129, 114106 (2008). [3] A. Ishizaki and G.R. Fleming, J. Chem. Phys. 130, 234111 (2009). [4] A. Ishizaki and G.R. Fleming, Proc. Natl. Acad. Sci. 106, 17255 (2009). [5] G. Tao and W.H. Miller, J. Phys. Chem. Lett. 1, 891 (2010). [6] P.Huo and D.F.Coker in preparationNational Science Foundation (CHE-0911635
Optimization of energy transport in the Fenna-Matthews-Olson complex via site-varying pigment-protein interactions
Energy transport in photosynthetic systems can be tremendously efficient. In
particular we study exciton transport in the Fenna-Mathews-Olsen (FMO) complex
found in green sulphur bacteria. The exciton dynamics and energy transfer
efficiency is dependent upon the interaction with the system environment. Based
upon realistic, site-dependent, models of the system-bath coupling, we show
that this interaction is highly optimised in the case of FMO. Furthermore we
identify two transport pathways and note that one is dominated by coherent
dynamics and the other by classical energy dissipation. In particular we note a
strong correlation between energy transport efficiency and coherence for
exciton transfer from bacteriochlorophyll (BChl) 8 to BChl 4. The existence of
two clear pathways and the role played by BChl 4 also challenges assumptions
around the coupling of the FMO complex to the reaction centre.Comment: 12 pages, 5 figures, 2 table
Baseline design of the filters for the LAD detector on board LOFT
The Large Observatory for X-ray Timing (LOFT) was one of the M3 missions
selected for the phase A study in the ESA's Cosmic Vision program. LOFT is
designed to perform high-time-resolution X-ray observations of black holes and
neutron stars. The main instrument on the LOFT payload is the Large Area
Detector (LAD), a collimated experiment with a nominal effective area of ~10 m
2 @ 8 keV, and a spectral resolution of ~240 eV in the energy band 2-30 keV.
These performances are achieved covering a large collecting area with more than
2000 large-area Silicon Drift Detectors (SDDs) each one coupled to a collimator
based on lead-glass micro-channel plates. In order to reduce the thermal load
onto the detectors, which are open to Sky, and to protect them from out of band
radiation, optical-thermal filter will be mounted in front of the SDDs.
Different options have been considered for the LAD filters for best compromise
between high quantum efficiency and high mechanical robustness. We present the
baseline design of the optical-thermal filters, show the nominal performances,
and present preliminary test results performed during the phase A study.Comment: Proc. SPIE 9144, Space Telescopes and Instrumentation 2014:
  Ultraviolet to Gamma Ray, 91446
Quantum initial condition sampling for linearized density matrix dynamics: Vibrational pure dephasing of iodine in krypton matrices
This paper reviews the linearized path integral approach for computing time
dependent properties of systems that can be approximated using a mixed
quantum-classical description. This approach is applied to studying vibrational
pure dephasing of ground state molecular iodine in a rare gas matrix. The
Feynman-Kleinert optimized harmonic approximation for the full system density
operator is used to sample initial conditions for the bath degrees of freedom.
This extremely efficient approach is compared with alternative initial
condition sampling techniques at low temperatures where classical initial
condition sampling yields dephasing rates that are nearly an order of magnitude
too slow compared with quantum initial condition sampling and experimental
results.Comment: 20 pages and 8 figure
On the Propagation of Slip Fronts at Frictional Interfaces
The dynamic initiation of sliding at planar interfaces between deformable and
rigid solids is studied with particular focus on the speed of the slip front.
Recent experimental results showed a close relation between this speed and the
local ratio of shear to normal stress measured before slip occurs (static
stress ratio). Using a two-dimensional finite element model, we demonstrate,
however, that fronts propagating in different directions do not have the same
dynamics under similar stress conditions. A lack of correlation is also
observed between accelerating and decelerating slip fronts. These effects
cannot be entirely associated with static local stresses but call for a dynamic
description. Considering a dynamic stress ratio (measured in front of the slip
tip) instead of a static one reduces the above-mentioned inconsistencies.
However, the effects of the direction and acceleration are still present. To
overcome this we propose an energetic criterion that uniquely associates,
independently on the direction of propagation and its acceleration, the slip
front velocity with the relative rise of the energy density at the slip tip.Comment: 15 pages, 6 figure
Computational Study Of Molecular Hydrogen In Zeolite Na-A. I. Potential Energy Surfaces And Thermodynamic Separation Factors For Ortho And Para Hydrogen
We simulate H-2 adsorbed within zeolite Na-A. We use a block Lanczos procedure to generate the first several (9) rotational eigenstates of the molecule, which is modeled as a rigid, quantum rotor with an anisotropic polarizability and quadrupole moment. The rotor interacts with Na cations and O anions; interaction parameters are chosen semiempirically and the truncation of electrostatic fields is handled with a switching function. A Monte Carlo proceedure is used to sample a set of states based on the canonical distribution. Potential energy surfaces, favorable adsorbtion sites, and distributions of barriers to rotation are analyzed. Separation factors for ortho-parahydrogen are calculated; at low temperatures, these are controlled by the ease of rotational tunneling through barriers. (C) 1999 American Institute of Physics
The Role of Magnetic Field Dissipation in the Black Hole Candidate Sgr A*
The compact, nonthermal radio source Sgr A* at the Galactic Center appears to
be coincident with a 2.6 million solar mass point-like object. Its energy
source may be the release of gravitational energy as gas from the interstellar
medium descends into its potential well. Simple attempts at calculating the
spectrum and flux based on this picture have come close to the observations,
yet have had difficulty in accounting for the low efficiency in this source.
There now appear to be two reasons for this low conversion rate: (1) the plasma
separates into two temperatures, with the protons attaining a significantly
higher temperature than that of the radiating electrons, and (2) the magnetic
field, B, is sub-equipartition, which reduces the magnetic bremsstrahlung
emissivity, and therefore the overall power of Sgr A*. We investigate the
latter with improvement over what has been attempted before: rather than
calculating B based on a presumed model, we instead infer its distribution with
radius empirically with the requirement that the resulting spectrum matches the
observations. Our ansatz for B(r) is motivated in part by earlier calculations
of the expected magnetic dissipation rate due to reconnection in a compressed
flow. We find reasonable agreement with the observed spectrum of Sgr A* as long
as its distribution consists of 3 primary components: an outer equipartition
field, a roughly constant field at intermediate radii (~1000 Schwarzschild
radii), and an inner dynamo (more or less within the last stable orbit for a
non-rotating black hole) which increases B to about 100 Gauss. The latter
component accounts for the observed sub-millimiter hump in this source.Comment: 33 pages including 2 figures; submitted to Ap
- …
