24 research outputs found

    Ultrathin coatings of nanoporous materials as property enhancements for advanced functional materials.

    Get PDF
    This report summarizes the findings of a five-month LDRD project funded through Sandia's NTM Investment Area. The project was aimed at providing the foundation for the development of advanced functional materials through the application of ultrathin coatings of microporous or mesoporous materials onto the surface of substrates such as silicon wafers. Prior art teaches that layers of microporous materials such as zeolites may be applied as, e.g., sensor platforms or gas separation membranes. These layers, however, are typically several microns to several hundred microns thick. For many potential applications, vast improvements in the response of a device could be realized if the thickness of the porous layer were reduced to tens of nanometers. However, a basic understanding of how to synthesize or fabricate such ultra-thin layers is lacking. This report describes traditional and novel approaches to the growth of layers of microporous materials on silicon wafers. The novel approaches include reduction of the quantity of nutrients available to grow the zeolite layer through minimization of solution volume, and reaction of organic base (template) with thermally-oxidized silicon wafers under a steam atmosphere to generate ultra-thin layers of zeolite MFI

    The oxidation of aluminum at high temperature studied by Thermogravimetric Analysis and Differential Scanning Calorimetry.

    Get PDF
    The oxidation in air of high-purity Al foil was studied as a function of temperature using Thermogravimetric Analysis with Differential Scanning Calorimetry (TGA/DSC). The rate and/or extent of oxidation was found to be a non-linear function of the temperature. Between 650 and 750 %C2%B0C very little oxidation took place; at 850 %C2%B0C oxidation occurred after an induction period, while at 950 %C2%B0C oxidation occurred without an induction period. At oxidation temperatures between 1050 and 1150 %C2%B0C rapid passivation of the surface of the aluminum foil occurred, while at 1250 %C2%B0C and above, an initial rapid mass increase was observed, followed by a more gradual increase in mass. The initial rapid increase was accompanied by a significant exotherm. Cross-sections of oxidized specimens were characterized by scanning electron microscopy (SEM); the observed alumina skin thicknesses correlated qualitatively with the observed mass increases

    Ion exchange studies of microporous solids

    No full text
    Imperial Users onl

    Thermochemical cycle of a mixed metal oxide for augmentation of thermal energy storage in solid particles

    Get PDF
    Solid particle heat transfer and storage media have been shown to be able to operate at temperatures \u3e1000°C in concentrated solar power (CSP) applications, much higher than the operational limit of 600°C for current state-of-the-art molten nitrate salt heat transfer fluid. Solid particles can be endothermically reduced by direct exposure to concentrated solar energy, thus absorbing and storing thermal energy beyond that possible with sensible heating alone. The particles can then be oxidized exothermically at a later time, releasing the stored chemical heat and effectively augmenting the thermal energy storage capacity of the solid particles. A mixed metal oxide spinel material that reduces in the temperature range of interest (1000-1200°C) has been examined for applicability to this thermochemical energy storage concept. A description of this application, prospective materials, and details of the thermochemical cycle are presented. The heats of reduction and oxidation for the thermochemical cycle have been determined for various operating conditions to evaluate the amount of thermal energy that may be stored. Various possible implementations of this augmented storage concept are considered, and alternate means of controlling the thermochemical cycle are explored

    Formation of Ba3Nb0.75Mn2.25O9-6H during thermochemical reduction of Ba4NbMn3O12-12R

    No full text
    The resurgence of interest in hydrogen-related technologies has stimulated new studies aimed at advancing lesser-developed water-splitting processes, such as solar thermochemical hydrogen production (STCH). Progress in STCH has been largely hindered by a lack of new materials able to efficiently split water at a rate comparable to ceria under identical experimental conditions. BaCe0.25Mn0.75O3 (BCM) recently demonstrated enhanced hydrogen production over ceria and has the potential to further our understanding of two-step thermochemical cycles. A significant feature of the 12R hexagonal perovskite structure of BCM is the tendency to, in part, form a 6H polytype at high temperatures and reducing environments (i.e., during the first step of the thermochemical cycle), which may serve to mitigate degradation of the complex oxide. An analogous compound, namely BaNb0.25Mn0.75O3 (BNM) with a 12R structure was synthesized and displays nearly complete conversion to the 6H structure under identical reaction conditions as BCM. The structure of the BNM-6H polytype was determined from Rietveld refinement of synchrotron powder X-ray diffraction data and is presented within the context of the previously established BCM-6H structure
    corecore