11 research outputs found

    A simulation study on the effect of sodium on grain boundary passivation in CIGS thin-film solar cells

    Get PDF
    3D numerical simulations of CIGS thin-film solar cells with different grain-boundary (GB) characteristics have been carried out in order to investigate the effect of defect properties and band edge shifts at GBs on the cell performance. Simulation results are compared with experimental data taken on cells with and without NaF post deposition treatment. GBs with different energy gaps and defect properties have been analyzed. Simulations support the idea that the detrimental effect of defective GBs on the cell performance might be reduced by a treatment with Na. The results of this study can help with the interpretation of experimental findings

    Fingerprints Indicating Superior Properties of Internal Interfaces in Cu(In,Ga)Se2 Thin-Film Solar Cells

    Get PDF
    Growth of Cu(In,Ga)Se2 (CIGS) absorbers under Cu-poor conditions gives rise to incorporation of numerous defects into the bulk, whereas the same absorber grown under Cu-rich conditions leads to a stoichiometric bulk with minimum defects. This suggests that CIGS absorbers grown under Cu-rich conditions are more suitable for solar cell applications. However, the CIGS solar cell devices with record efficiencies have all been fabricated under Cu-poor conditions, despite the expectations. Therefore, in the present work, both Cu-poor and Cu-rich CIGS cells are investigated, and the superior properties of the internal interfaces of the Cu-poor CIGS cells, such as the p-n junction and grain boundaries, which always makes them the record-efficiency devices, are shown. More precisely, by employing a correlative microscopy approach, the typical fingerprints for superior properties of internal interfaces necessary for maintaining a lower recombination activity in the cell is discovered. These are a Cu-depleted and Cd-enriched CIGS absorber surface, near the p-n junction, as well as a negative Cu factor (∆ÎČ) and high Na content (>1.5 at%) at the grain boundaries. Thus, this work provides key factors governing the device performance (efficiency), which can be considered in the design of next-generation solar cells

    Monatomic phase change memory

    No full text
    Phase change memory has been developed into a mature technology capable of storing information in a fast and non-volatile way1–3, with potential for neuromorphic computing applications4–6. However, its future impact in electronics depends crucially on how the materials at the core of this technology adapt to the requirements arising from continued scaling towards higher device densities. A common strategy to fine-tune the properties of phase change memory materials, reaching reasonable thermal stability in optical data storage, relies on mixing precise amounts of different dopants, resulting often in quaternary or even more complicated compounds6–8. Here we show how the simplest material imaginable, a single element (in this case, antimony), can become a valid alternative when confined in extremely small volumes. This compositional simplification eliminates problems related to unwanted deviations from the optimized stoichiometry in the switching volume, which become increasingly pressing when devices are aggressively miniaturized9,10. Removing compositional optimization issues may allow one to capitalize on nanosize effects in information storage

    Discovering Electron-Transfer-Driven Changes in Chemical Bonding in Lead Chalcogenides (PbX, where X = Te, Se, S, O)

    No full text
    Understanding the nature of chemical bonding in solids is crucial to comprehend the physical and chemical properties of a given compound. To explore changes in chemical bonding in lead chalcogenides (PbX, where X = Te, Se, S, O), a combination of property-, bond-breaking-, and quantum-mechanical bonding descriptors are applied. The outcome of the explorations reveals an electron-transfer-driven transition from metavalent bonding in PbX (X = Te, Se, S) to iono-covalent bonding in ÎČ-PbO. Metavalent bonding is characterized by adjacent atoms being held together by sharing about a single electron (ES ≈ 1) and small electron transfer (ET). The transition from metavalent to iono-covalent bonding manifests itself in clear changes in these quantum-mechanical descriptors (ES and ET), as well as in property-based descriptors (i.e., Born effective charge (Z*), dielectric function Δ(ω), effective coordination number (ECoN), and mode-specific GrĂŒneisen parameter (ÎłTO)), and in bond-breaking descriptors. Metavalent bonding collapses if significant charge localization occurs at the ion cores (ET) and/or in the interatomic region (ES). Predominantly changing the degree of electron transfer opens possibilities to tailor material properties such as the chemical bond (Z*) and electronic (Δ∞) polarizability, optical bandgap, and optical interband transitions characterized by Δ2(ω). Hence, the insights gained from this study highlight the technological relevance of the concept of metavalent bonding and its potential for materials design

    Cu Intercalation and Br Doping to Thermoelectric SnSe2 Lead to Ultrahigh Electron Mobility and Temperature-Independent Power Factor

    No full text
    Due to its single conduction band nature, it is highly challenging to enhance the power factor of SnSe2 by band convergence. Here, it is reported that simultaneous Cu intercalation and Br doping induce strong Cu-Br interaction to connect SnSe2 layers, otherwise isolated, via "electrical bridges." Atom probe tomography analysis confirms a strong attraction between Cu intercalants and Br dopants in the SnSe2 lattice. Density functional theory calculations reveal that this interaction delocalizes electrons confined around Sn-Se covalent bonds and enhances charge transfer across the SnSe2 slabs. These effects dramatically increase electron mobility and concentration. Polycrystalline SnCu0.005Se1.98Br0.02 shows even higher electron mobility than pristine SnSe2 single crystal and the theoretical expectation. This results in significantly improved electrical conductivity without reducing effective mass and Seebeck coefficient, thereby leading to the highest power factor of approximate to 12 mu W cm(-1) K-2 to date for polycrystalline SnSe2 and SnSe. It even surpasses the value for the state-of-the-art n-type SnSe0.985Br0.015 single crystal at elevated temperatures. Surprisingly, the achieved power factor is nearly independent of temperature ranging from 300 to 773 K. The engineering thermoelectric figure of merit ZT(eng) for SnCu0.005Se1.98Br0.02 is approximate to 0.25 between 773 and 300 K, the highest ZT(eng) ever reported for any form of SnSe2-based thermoelectric materials. © 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinhei
    corecore