267 research outputs found

    Leakage-current lineshapes from inelastic cotunneling in the Pauli spin blockade regime

    Full text link
    We find the leakage current through a double quantum dot in the Pauli spin blockade regime accounting for inelastic (spin-flip) cotunneling processes. Taking the energy-dependence of this spin-flip mechanism into account allows for an accurate description of the current as a function of applied magnetic fields, gate voltages, and an inter-dot tunnel coupling. In the presence of an additional local dephasing process or nonuniform magnetic field, we obtain a simple closed-form analytical expression for the leakage current giving the full dependence on an applied magnetic field and energy detuning. This work is important for understanding the nature of leakage, especially in systems where other spin-flip mechanisms (due, e.g., to hyperfine coupling to nuclear spins or spin-orbit coupling) are weak, including silicon and carbon-nanotube or graphene quantum dots.Comment: 11 pages, 10 figures; v2: Typos corrected, colorbar added to fig. 7, final version published in Phys. Rev.

    Enhancing qubit readout through dissipative sub-Poissonian dynamics

    Full text link
    Single-shot qubit readout typically combines high readout contrast with long-lived readout signals, leading to large signal-to-noise ratios and high readout fidelities. In recent years, it has been demonstrated that both readout contrast and readout signal lifetime, and thus the signal-to-noise ratio, can be enhanced by forcing the qubit state to transition through intermediate states. In this work, we demonstrate that the sub-Poissonian relaxation statistics introduced by intermediate states can reduce the single-shot readout error rate by orders of magnitude even when there is no increase in signal-to-noise ratio. These results hold for moderate values of the signal-to-noise ratio (S≲100\mathcal{S} \lesssim 100) and a small number of intermediate states (N≲10N \lesssim 10). The ideas presented here could have important implications for readout schemes relying on the detection of transient charge states, such as spin-to-charge conversion schemes for semiconductor spin qubits and parity-to-charge conversion schemes for topologically protected Majorana qubits.Comment: 10 pages, 6 figures. Two appendices have been added. This version is close to the final published versio

    Exchange-controlled single-electron-spin rotations in quantum dots

    Full text link
    We show theoretically that arbitrary coherent rotations can be performed quickly (with a gating time ~1 ns) and with high fidelity on the spin of a single confined electron using control of exchange only, without the need for spin-orbit coupling or ac fields. We expect that implementations of this scheme would achieve gate error rates on the order of \eta ~ 10^{-3} in GaAs quantum dots, within reach of several known error-correction protocolsComment: 4+ pages, 3 figures; v2: Streamlined presentation, final version published in PRB (Rapid Comm.
    • …
    corecore