6 research outputs found

    Modification of silicone elastomers with Bioglass 45S5® increases in ovo tissue biointegration

    Full text link
    Silicone is an important material family used for various medical implants. It is biocompatible, but its bioinertness prevents cell attachment, and thus tissue biointegration of silicone implants. This often results in constrictive fibrosis and implant failure. Bioglass 45S5® (BG) could be a suitable material to alter the properties of silicone, render it bioactive and improve tissue integration. Therefore, BG micro- or nanoparticles were blended into medical-grade silicone and 2D as well as 3D structures of the resulting composites were analyzed in ovo by a chick chorioallantoic membrane (CAM) assay. The biomechanical properties of the composites were measured and the bioactivity of the composites was verified in simulated body fluid. The bioactivity of BG-containing composites was confirmed visually by the formation of hydroxyapatite through scanning electron microscopy as well as by infrared spectroscopy. BG stiffens as prepared non-porous composites by 13% and 36% for micro- and nanocomposites respectively. In particular, after implantation for 7 days, the Young's modulus had increased significantly from 1.20 ± 0.01 to 1.57 ± 0.03 MPa for microcomposites and 1.44 ± 0.03 to 1.69 ± 0.29 MPa to for nanocpmosites. Still, the materials remain highly elastic and are comparably soft. The incorporation of BG into silicone overcame the bioinertness of the pure polymer. Although the overall tissue integration was weak, it was significantly improved for BG-containing porous silicones (+72% for microcomposites) and even further enhanced for composites containing nanoparticles (+94%). These findings make BG a suitable material to improve silicone implant properties. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res B Part B: Appl Biomater, 2018

    Entry of Herpes Simplex Virus Type 1 (HSV-1) into the Distal Axons of Trigeminal Neurons Favors the Onset of Nonproductive, Silent Infection

    Get PDF
    Following productive, lytic infection in epithelia, herpes simplex virus type 1 (HSV-1) establishes a lifelong latent infection in sensory neurons that is interrupted by episodes of reactivation. In order to better understand what triggers this lytic/latent decision in neurons, we set up an organotypic model based on chicken embryonic trigeminal ganglia explants (TGEs) in a double chamber system. Adding HSV-1 to the ganglion compartment (GC) resulted in a productive infection in the explants. By contrast, selective application of the virus to distal axons led to a largely nonproductive infection that was characterized by the poor expression of lytic genes and the presence of high levels of the 2.0-kb major latency-associated transcript (LAT) RNA. Treatment of the explants with the immediate-early (IE) gene transcriptional inducer hexamethylene bisacetamide, and simultaneous co-infection of the GC with HSV-1, herpes simplex virus type 2 (HSV-2) or pseudorabies virus (PrV) helper virus significantly enhanced the ability of HSV-1 to productively infect sensory neurons upon axonal entry. Helper-virus-induced transactivation of HSV-1 IE gene expression in axonally-infected TGEs in the absence of de novo protein synthesis was dependent on the presence of functional tegument protein VP16 in HSV-1 helper virus particles. After the establishment of a LAT-positive silent infection in TGEs, HSV-1 was refractory to transactivation by superinfection of the GC with HSV-1 but not with HSV-2 and PrV helper virus. In conclusion, the site of entry appears to be a critical determinant in the lytic/latent decision in sensory neurons. HSV-1 entry into distal axons results in an insufficient transactivation of IE gene expression and favors the establishment of a nonproductive, silent infection in trigeminal neurons

    Bioactive glass containing silicone composites for left ventricular assist device drivelines: role of Bioglass 45S5® particle size on mechanical properties and cytocompatibility

    No full text
    Aside its historical use in contact with bone and teeth, an increasing number of studies use bioactive glasses (BG) in contact with soft tissue. BG could provide solutions for various medical problems. This study presents a first evaluation, whether BG containing silicone elastomers are a suitable material for left ventricular assist device drivelines and could enhance skin biointegration thereof. Three different nano- or microparticles of BG45S5® were incorporated into medical grade silicone elastomer, and thin films of the composites were manufactured. Physicochemical, mechanical and in vitro experiments using primary human dermal fibroblasts were used to evaluate the nano- and microcomposites. The incorporation of BG particles reduced the tensile strength at break and percent elongation at break of the composites and increased the stiffness of the material. Especially, the incorporation of nanosized BG decreased the percent elongation at break after immersion in SBF due to agglomerate formation and increased hydroxyapatite formation compared to commercially available microparticles. The cytocompatibility of BG containing composites increased significantly with increasing particle concentration. A clear trend regarding particle size was not observed. In general, the simple incorporation of particles into medical grade silicone elastomer allowed an easy modification of the mechanical properties and improvement in bioactivity (assessed by hydroxyapatite formation) of the material. The choice of either nano- or microparticles depends on the specific application and requirements for the material, as different particle types show different advantages and disadvantages.ISSN:0022-2461ISSN:1573-480
    corecore