23 research outputs found

    Identification of Faint Chandra X-ray Sources in the Core-Collapsed Globular Cluster NGC 6752

    Full text link
    We have searched for optical identifications for 39 Chandra X-ray sources that lie within the 1.9 arcmin half-mass radius of the nearby (d = 4.0 kpc), core-collapsed globular cluster, NGC 6752, using deep Hubble Space Telescope ACS/WFC imaging in B435, R625, and H alpha. Photometry of these images allows us to classify candidate counterparts based primarily on color-magnitude and color-color diagram location. The color-color diagram is particularly useful for quantifying the H alpha line equivalent width. In addition to recovering 11 previously detected optical counterparts, we propose 20 new optical IDs. In total, there are 16 likely or less certain cataclysmic variables (CVs), nine likely or less certain chromospherically active binaries, three galaxies, and three active galactic nuclei (AGNs). The latter three sources, which had been identified as likely CVs by previous investigations, now appear to be extragalactic objects based on their proper motions. As we previously found for NGC 6397, the CV candidates in NGC 6752 fall into a bright group that is centrally concentrated relative to the turnoff-mass stars and a faint group that has a spatial distribution that is more similar to that of the turnoff-mass stars. This is consistent with an evolutionary scenario in which CVs are produced by dynamical interactions near the cluster center and diffuse to larger radius orbits as they age.Comment: 26 pages, 18 figure

    Exotica in the Globular Cluster M4, Studied with Chandra, HST, and the VLA

    Full text link
    Using the Hubble Ultraviolet Globular Cluster Survey (HUGS) and additional HST archival data, we have carried out a search for optical counterparts to the low-luminosity Chandra X-ray sources in the globular cluster M4 (NGC 6121). We have also searched for optical or X-ray counterparts to radio sources detected by the VLA. We find 24 new confident optical counterparts to Chandra sources for a total of 40, including the 16 previously identified. Of the 24 new identifications, 18 are stellar coronal X-ray sources (active binaries, ABs), the majority located along the binary sequence in a V-I colour-magnitude diagram and generally showing an H-alpha excess. In addition to confirming the previously detected cataclysmic variable (CV, CX4), we identify one confident new CV (CX76), and two candidates (CX81 and CX101). One MSP is known in M4 (CX12), and another strong candidate has been suggested (CX1); we identify some possible MSP candidates among optical and radio sources, such as VLA20, which appears to have a white dwarf counterpart. One X-ray source with a sub-subgiant optical counterpart and a flat radio spectrum (CX8, VLA31) is particularly mysterious. The radial distribution of X-ray sources suggests a relaxed population of average mass ~ 1.2 - 1.5 Msun. Comparing the numbers of ABs, MSPs, and CVs in M4 with other clusters indicates that AB numbers are proportional to cluster mass (primordial population), MSPs to stellar encounter rate (dynamically formed population), while CVs seem to be produced both primordially and dynamically.Comment: 30 pages, 12 figures, 2 pages of supplementary material containing finding chart

    Chandra X-ray Sources in the Collapsed-Core Globular Cluster M30 (NGC 7099)

    Get PDF
    We report the detection of six discrete, low-luminosity (Lx < 10^33 erg/s) X-ray sources, located within 12 arcsec of the center of the collapsed-core globular cluster M30 (NGC 7099), and a total of 13 sources within the half-mass radius, from a 50 ksec Chandra ACIS-S exposure. Three sources lie within the very small upper limit of 1.9 arcsec on the core radius. The brightest of the three core sources has a luminosity of Lx (0.5-6 keV) = 6x10^32 erg/s and a blackbody-like soft X-ray spectrum, which are both consistent with it being a quiescent low-mass X-ray binary (qLMXB). We have identified optical counterparts to four of the six central sources and a number of the outlying sources, using deep Hubble Space Telescope and ground-based imaging. While the two proposed counterparts that lie within the core may represent chance superpositions, the two identified central sources that lie outside of the core have X-ray and optical properties consistent with being CVs. Two additional sources outside of the core have possible active binary counterparts. We discuss the X-ray source population of M30 in light of its collapsed-core status.Comment: 18 pages, 13 figures (8 color), resubmitted to ApJ after incorporating referee comment

    Cataclysmic Variables and a New Class of Faint UV Stars in the Globular Cluster NGC 6397

    Get PDF
    We present evidence that the globular cluster NGC 6397 contains two distinct classes of centrally-concentrated UV-bright stars. Color-magnitude diagrams constructed from U, B, V, and I data obtained with the HST/WFPC2 reveal seven UV-bright stars fainter than the main-sequence turnoff, three of which had previously been identified as cataclysmic variables (CVs). Lightcurves of these stars show the characteristic ``flicker'' of CVs, as well as longer-term variability. A fourth star is identified as a CV candidate on the basis of its variability and UV excess. Three additional UV-bright stars show no photometric variability and have broad-band colors characteristic of B stars. These non-flickering UV stars are too faint to be extended horizontal branch stars. We suggest that they could be low-mass helium white dwarfs, formed when the evolution of a red giant is interrupted, due either to Roche-lobe overflow onto a binary companion, or to envelope ejection following a common-envelope phase in a tidal-capture binary. Alternatively, they could be very-low-mass core-He-burning stars. Both the CVs and the new class of faint UV stars are strongly concentrated toward the cluster center, to the extent that mass segregation from 2-body relaxation alone may be unable to explain their distribution.Comment: 11 pages plus 3 eps figures; LaTeX using aaspp4.sty; to appear in The Astrophysical Journal Letter

    Identification Of Faint Chandra X-Ray Sources In The Core-Collapsed Globular Cluster NGC 6397: Evidence For A Bimodal Cataclysmic Variable Population

    Get PDF
    We have searched for optical identifications for 79 Chandra X-ray sources that lie within the half-mass radius of the nearby, core-collapsed globular cluster NGC 6397, using deep Hubble Space Telescope Advanced Camera for Surveys Wide Field Channel imaging in H alpha, R, and B. Photometry of these images allows us to classify candidate counterparts based on color-magnitude diagram location. In addition to recovering nine previously detected cataclysmic variables (CVs), we have identified six additional faint CV candidates, a total of 42 active binaries (ABs), two millisecond pulsars, one candidate active galactic nucleus, and one candidate interacting galaxy pair. Of the 79 sources, 69 have a plausible optical counterpart. The 15 likely and possible CVs in NGC 6397 mostly fall into two groups: a brighter group of six for which the optical emission is dominated by contributions from the secondary and accretion disk and a fainter group of seven for which the white dwarf dominates the optical emission. There are two possible transitional objects that lie between these groups. The faintest CVs likely lie near the minimum of the CV period distribution, where an accumulation is expected. The spatial distribution of the brighter CVs is much more centrally concentrated than those of the fainter CVs and the ABs. This may represent the result of an evolutionary process in which CVs are produced by dynamical interactions, such as exchange reactions, near the cluster center and are scattered to larger orbital radii, over their lifetimes, as they age and become fainter.NASA HST-GO-10257ANSF REU AST-0452975NSERCCIFARAstronom

    HST-NICMOS Observations of Terzan 5: Stellar Content and Structure of the Core

    Get PDF
    We report results from HST-NICMOS imaging of the extremely dense core of the globular cluster Terzan 5. This highly obscured bulge cluster has been estimated to have one of the highest collision rates of any galactic globular cluster, making its core a particularly conducive environment for the production of interacting binary systems. We have reconstructed high-resolution images of the central 19"x19" region of Terzan 5 by application of the drizzle algorithm to dithered NIC2 images in the F110W, F187W, and F187N near-infrared filters. We have used a DAOPHOT/ALLSTAR analysis of these images to produce the deepest color-magnitude diagram (CMD) yet obtained for the core of Terzan 5. We have also analyzed the parallel 11"X11" NIC1 field, centered 30" from the cluster center and imaged in F110W and F160W, and an additional NIC2 field that is immediately adjacent to the central field. This imaging results in a clean detection of the red-giant branch and horizontal branch in the central NIC2 field, and the detection of these plus the main-sequence turnoff and the upper main sequence in the NIC1 field. We have constructed an H versus J-H CMD for the NIC1 field. We obtain a new distance estimate of 8.7 kpc, which places Terzan 5 within less than 1 kpc of the galactic center. We have also determined a central surface-density profile which results in a maximum likelihood estimate of 7.9" +/- 0.6" for the cluster core radius. We discuss the implications of these results for the dynamical state of Terzan 5.Comment: 17 pages, 9 figures, accepted for publication in ApJ, for May 20, 200

    The Dynamics of the Merging Galaxy Cluster System A2256: Evidence for a New Subcluster

    Get PDF
    We present 236 new radial velocities of galaxies in the cluster A2256 measured with the WIYN Hydra Multi-Object Spectrograph. Combined with the previous work of Fabricant, Kent, & Kurtz, we have velocities for a total of 319 galaxies, of which 277 are cluster members. In addition to the new radial velocities, we present a 3 × 3 image mosaic in the R band of the central 19′ × 19′ region of A2256, from which we obtained photometry for 861 galaxies. These data provide strong evidence for a merger event between two groups. In addition, we present evidence for the presence of a third group, on the outer reaches of the system, that is just now beginning to merge with the system
    corecore