263 research outputs found

    On the current correlators in QCD at finite temperature

    Full text link
    Current correlators in QCD at a finite temperature TT are considered from the viewpoint of operator product expansion. It is stressed that at low TT the heat bath must be represented by hadronic, and not quark-gluon states. A possibility to express the results in terms of TT-dependent resonance masses is discussed. It is demonstrated that in order T2T^2 the masses do not move and the only phenomenon which occurs is a parity and isospin mixing.Comment: 6 pages, TPI-MINN-92/64-

    Towards a Nonequilibrium Quantum Field Theory Approach to Electroweak Baryogenesis

    Get PDF
    We propose a general method to compute CPCP-violating observables from extensions of the standard model in the context of electroweak baryogenesis. It is alternative to the one recently developed by Huet and Nelson and relies on a nonequilibrium quantum field theory approach. The method is valid for all shapes and sizes of the bubble wall expanding in the thermal bath during a first-order electroweak phase transition. The quantum physics of CPCP-violation and its suppression coming from the incoherent nature of thermal processes are also made explicit.Comment: 19 pages, 1 figure available upon e-mail reques

    Baryon Tri-local Interpolating Fields

    Full text link
    We systematically investigate tri-local (non-local) three-quark baryon fields with U_L(2)*U_R(2) chiral symmetry, according to their Lorentz and isospin (flavor) group representations. We note that they can also be called as "nucleon wave functions" due to this full non-locality. We study their chiral transformation properties and find all the possible chiral multiplets consisting J=1/2 and J=3/2 baryon fields. We find that the axial coupling constant |g_A| = 5/3 is only for nucleon fields belonging to the chiral representation (1/2,1)+(1,1/2) which contains both nucleon fields and Delta fields. Moreover, all the nucleon fields belonging to this representation have |g_A| = 5/3.Comment: 8 pages, 3 tables, accepted by EPJ

    Learning in large learning spaces:the academic engagement of a diverse group of students

    Get PDF
    Teaching larger groups of students is a growing phenomenon in HE and this brings with it, its own challenges not least for the students themselves but also their lecturers. Demographic factors as well as the experiences that characterise us as individuals will impact upon our ability to learn. The pilot study reported here considered the “academic engagement” of a diverse group of students where their course is delivered in large learning environments. As a pilot study, the paper concludes with the identification of two areas which are worthy of further research. Firstly, the study highlighted that mature students were more likely to engage in learning strategies that are associated with surface learning – the binary opposite to which practitioners often strive to achieve. Secondly, the research suggests that students who appear to know their tutors well indicate a preference for study approaches that are likely to develop deeper learning

    Fluctuation-dissipation relationship in chaotic dynamics

    Full text link
    We consider a general N-degree-of-freedom dissipative system which admits of chaotic behaviour. Based on a Fokker-Planck description associated with the dynamics we establish that the drift and the diffusion coefficients can be related through a set of stochastic parameters which characterize the steady state of the dynamical system in a way similar to fluctuation-dissipation relation in non-equilibrium statistical mechanics. The proposed relationship is verified by numerical experiments on a driven double well system.Comment: Revtex, 23 pages, 2 figure

    Are randomly grown graphs really random?

    Full text link
    We analyze a minimal model of a growing network. At each time step, a new vertex is added; then, with probability delta, two vertices are chosen uniformly at random and joined by an undirected edge. This process is repeated for t time steps. In the limit of large t, the resulting graph displays surprisingly rich characteristics. In particular, a giant component emerges in an infinite-order phase transition at delta = 1/8. At the transition, the average component size jumps discontinuously but remains finite. In contrast, a static random graph with the same degree distribution exhibits a second-order phase transition at delta = 1/4, and the average component size diverges there. These dramatic differences between grown and static random graphs stem from a positive correlation between the degrees of connected vertices in the grown graph--older vertices tend to have higher degree, and to link with other high-degree vertices, merely by virtue of their age. We conclude that grown graphs, however randomly they are constructed, are fundamentally different from their static random graph counterparts.Comment: 8 pages, 5 figure

    Searching for star-planet magnetic interaction in CoRoT observations

    Full text link
    Close-in massive planets interact with their host stars through tidal and magnetic mechanisms. In this paper, we review circumstantial evidence for star-planet interaction as revealed by the photospheric magnetic activity in some of the CoRoT planet-hosting stars, notably CoRoT-2, CoRoT-4, and CoRoT-6. The phenomena are discussed in the general framework of activity-induced features in stars accompanied by hot Jupiters. The theoretical mechanisms proposed to explain the activity enhancements possibly related with hot Jupiter are also briefly reviewed with an emphasis on the possible effects at photospheric level. The unique advantages of CoRoT and Kepler observations to test these models are pointed out.Comment: Invited review paper accepted by Astrophysics and Space Science, 13 pages, 5 figure

    Evolution of wave packets in quasi-1D and 1D random media: diffusion versus localization

    Full text link
    We study numerically the evolution of wavepackets in quasi one-dimensional random systems described by a tight-binding Hamiltonian with long-range random interactions. Results are presented for the scaling properties of the width of packets in three time regimes: ballistic, diffusive and localized. Particular attention is given to the fluctuations of packet widths in both the diffusive and localized regime. Scaling properties of the steady-state distribution are also analyzed and compared with theoretical expression borrowed from one-dimensional Anderson theory. Analogies and differences with the kicked rotator model and the one-dimensional localization are discussed.Comment: 32 pages, LaTex, 11 PostScript figure

    Phenomenology of the Lense-Thirring effect in the Solar System

    Full text link
    Recent years have seen increasing efforts to directly measure some aspects of the general relativistic gravitomagnetic interaction in several astronomical scenarios in the solar system. After briefly overviewing the concept of gravitomagnetism from a theoretical point of view, we review the performed or proposed attempts to detect the Lense-Thirring effect affecting the orbital motions of natural and artificial bodies in the gravitational fields of the Sun, Earth, Mars and Jupiter. In particular, we will focus on the evaluation of the impact of several sources of systematic uncertainties of dynamical origin to realistically elucidate the present and future perspectives in directly measuring such an elusive relativistic effect.Comment: LaTex, 51 pages, 14 figures, 22 tables. Invited review, to appear in Astrophysics and Space Science (ApSS). Some uncited references in the text now correctly quoted. One reference added. A footnote adde
    • …
    corecore