2,233 research outputs found

    A comparison of short-term and long-term air pollution exposure associations with mortality in two cohorts in Scotland

    Get PDF
    Air pollution–mortality risk estimates are generally larger at longer-term, compared with short-term, exposure time scales. We compared associations between short-term exposure to black smoke (BS) and mortality with long-term exposure–mortality associations in cohort participants and with short-term exposure–mortality associations in the general population from which the cohorts were selected. We assessed short-to-medium–term exposure–mortality associations in the Renfrew–Paisley and Collaborative cohorts (using nested case–control data sets), and compared them with long-term exposure–mortality associations (using a multilevel spatiotemporal exposure model and survival analyses) and short-to-medium–term exposure–mortality associations in the general population (using time-series analyses). For the Renfrew–Paisley cohort (15,331 participants), BS exposure–mortality associations were observed in nested case–control analyses that accounted for spatial variations in pollution exposure and individual-level risk factors. These cohort-based associations were consistently greater than associations estimated in time-series analyses using a single monitoring site to represent general population exposure {e.g., 1.8% [95% confidence interval (CI): 0.1, 3.4%] vs. 0.2% (95% CI: 0.0, 0.4%) increases in mortality associated with 10-ÎŒg/m3 increases in 3-day lag BS, respectively}. Exposure–mortality associations were of larger magnitude for longer exposure periods [e.g., 3.4% (95% CI: –0.7, 7.7%) and 0.9% (95% CI: 0.3, 1.5%) increases in all-cause mortality associated with 10-ÎŒg/m3 increases in 31-day BS in case–control and time-series analyses, respectively; and 10% (95% CI: 4, 17%) increase in all-cause mortality associated with a 10-ÎŒg/m3 increase in geometic mean BS for 1970–1979, in survival analysis]. After adjusting for individual-level exposure and potential confounders, short-term exposure–mortality associations in cohort participants were of greater magnitude than in comparable general population time-series study analyses. However, short-term exposure–mortality associations were substantially lower than equivalent long-term associations, which is consistent with the possibility of larger, more persistent cumulative effects from long-term exposures

    Water intake, faecal output and intestinal motility in horses moved from pasture to a stabled management regime with controlled exercise

    Get PDF
    Reasons for performing study: A change in management from pasture to stabling is a risk factor for equine colic. Objectives: To investigate the effect of a management change from pasture with no controlled exercise to stabling with light exercise on aspects of gastrointestinal function related to large colon impaction. The hypothesis was that drinking water intake, faecal output, faecal water content and large intestinal motility would be altered by a transition from a pastured to a stabled regime. Study design: Within-subject management intervention trial involving changes in feeding and exercise using noninvasive techniques. Methods: Seven normal horses were evaluated in a within-subjects study design. Horses were monitored while at pasture 24 h/day, and for 14 days following a transition to a stabling regime with light controlled exercise. Drinking water intake, faecal output and faecal dry matter were measured. Motility of the caecum, sternal flexure and left colon (contractions/min) were measured twice daily by transcutaneous ultrasound. Mean values were pooled for the pastured regime and used as a reference for comparison with stabled data (Days 1–14 post stabling) for multilevel statistical analysis. Results: Drinking water intake was significantly increased (mean ± s.d. pasture 2.4 ± 1.8 vs. stabled 6.4 ± 0.6 l/100 kg bwt/day), total faecal output was significantly decreased (pasture 4.62 ± 1.69 vs. stabled 1.81 ± 0.5 kg/100 kg bwt/day) and faecal dry matter content was significantly increased (pasture 18.7 ± 2.28 vs. stabled 27.2 ± 1.93% DM/day) on all days post stabling compared with measurements taken at pasture (P<0.05). Motility was significantly decreased in all regions of the large colon collectively on Day 2 post stabling (-0.76 contractions/min), and in the left colon only on Day 4 (-0.62 contractions/min; P<0.05). Conclusions: There were significant changes in large intestinal motility patterns and parameters relating to gastrointestinal water balance during a transition from pasture to stabled management, particularly during the first 5 days

    Reconstruction of inhomogeneous metric perturbations and electromagnetic four-potential in Kerr spacetime

    Full text link
    We present a procedure that allows the construction of the metric perturbations and electromagnetic four-potential, for gravitational and electromagnetic perturbations produced by sources in Kerr spacetime. This may include, for example, the perturbations produced by a point particle or an extended object moving in orbit around a Kerr black hole. The construction is carried out in the frequency domain. Previously, Chrzanowski derived the vacuum metric perturbations and electromagnetic four-potential by applying a differential operator to a certain potential Κ\Psi . Here we construct Κ\Psi for inhomogeneous perturbations, thereby allowing the application of Chrzanowski's method. We address this problem in two stages: First, for vacuum perturbations (i.e. pure gravitational or electromagnetic waves), we construct the potential from the modes of the Weyl scalars ψ0\psi_{0} or ϕ0\phi_{0}. Second, for perturbations produced by sources, we express Κ\Psi in terms of the mode functions of the source, i.e. the energy-momentum tensor TαÎČT_{\alpha \beta} or the electromagnetic current vector JαJ_{\alpha}.Comment: 20 pages; few typos corrected and minor modifications made; accepted to Phys. Rev.

    Effective Values of Komar Conserved Quantities and Their Applications

    Full text link
    We calculate the effective Komar angular momentum for the Kerr-Newman (KN) black hole. This result is valid at any radial distance on and outside the black hole event horizon. The effcetive values of mass and angular momentum are then used to derive an identity (KχΌ=2STK_{\chi^{\mu}}=2ST) which relates the Komar conserved charge (KχΌK_{\chi^{\mu}}) corresponding to the null Killing vector (χΌ\chi^{\mu}) with the thermodynamic quantities of this black hole. As an application of this identity the generalised Smarr formula for this black hole is derived. This establishes the fact that the above identity is a local form of the inherently non-local generalised Smarr formula.Comment: v3, minor modifications over v2; LaTex, 9 pages, no figures, to appear in Int. Jour. Theo. Phy

    An evaluation of the relative efficacy of an open airway, an oxygen reservoir and continuous positive airway pressure 5 cmH2O on the non-ventilated lung

    Get PDF
    Publisher's copy made available with the permission of the publisher © Australian Society of AnaesthetistsThe aim of this study, during one-lung ventilation, was to evaluate if oxygenation could be improved by use of a simple oxygen reservoir or application of 5 cmH2O continuous positive airway pressure (CPAP) to the non-ventilated lung compared with an open airway. Twenty-three patients with lung malignancy, undergoing thoracotomy requiring at least 60 minutes of one-lung ventilation before lung lobe excision, were studied. After routine induction and establishment of one-lung ventilation, the three treatments were applied in turn to the same patient in a sequence selected randomly. The first treatment was repeated as a fourth treatment and these results of the repeated treatment averaged to minimize the effect of slow changes. Arterial oxygenation was measured by an arterial blood gas 15 minutes after the application of each treatment. Twenty patients completed the study. Mean PaO2 (in mmHg) was 210.3 (SD 105.5) in the 'OPEN' treatment, 186.0 (SD 109.2) in the 'RESERVOIR' treatment, and 240.5 (SD 116.0) in the 'CPAP' treatment. This overall difference was not quite significant (P=0.058, paired ANOVA), but comparison of the pairs showed that there was a significant better oxygenation only with the CPAP compared to the reservoir treatments (t=2.52, P=0.021). While the effect on the surgical field was not apparent in most patients, in one patient surgery was impeded during CPAP. Our results show that the use of a reservoir does not give oxygenation better than an open tube, and is less effective than the use of CPAP 5 cmH2O on the non-ventilated lung during one-lung ventilation.J. Slimani, W. J. Russell, C. Jurisevichttp://www.aaic.net.au/Article.asp?D=200404

    Entrance-channel Mass-asymmetry Dependence of Compound-nucleus Formation Time in Light Heavy-ion Reactions

    Get PDF
    The entrance-channel mass-asymmetry dependence of the compound nucleus formation time in light heavy-ion reactions has been investigated within the framework of semiclassical dissipative collision models. the model calculations have been succesfully applied to the formation of the 38^{38}Ar compound nucleus as populated via the 9^{9}Be+29^{29}Si, 11^{11}B+27^{27}Al, 12^{12}C+26^{26}Mg and 19^{19}F+19^{19}F entrance channels. The shape evolution of several other light composite systems appears to be consistent with the so-called "Fusion Inhibition Factor" which has been experimentally observed. As found previously in more massive systems for the fusion-evaporation process, the entrance-channel mass-asymmetry degree of freedom appears to determine the competition between the different mechanisms as well as the time scales involved.Comment: 12 pages, 3 Figures available upon request, Submitted at Phys. Rev.

    Reconstruction of Black Hole Metric Perturbations from Weyl Curvature

    Get PDF
    Perturbation theory of rotating black holes is usually described in terms of Weyl scalars ψ4\psi_4 and ψ0\psi_0, which each satisfy Teukolsky's complex master wave equation and respectively represent outgoing and ingoing radiation. On the other hand metric perturbations of a Kerr hole can be described in terms of (Hertz-like) potentials Κ\Psi in outgoing or ingoing {\it radiation gauges}. In this paper we relate these potentials to what one actually computes in perturbation theory, i.e ψ4\psi_4 and ψ0\psi_0. We explicitly construct these relations in the nonrotating limit, preparatory to devising a corresponding approach for building up the perturbed spacetime of a rotating black hole. We discuss the application of our procedure to second order perturbation theory and to the study of radiation reaction effects for a particle orbiting a massive black hole.Comment: 6 Pages, Revtex

    Neutral perfect fluids of Majumdar-type in general relativity

    Full text link
    We consider the extension of the Majumdar-type class of static solutions for the Einstein-Maxwell equations, proposed by Ida to include charged perfect fluid sources. We impose the equation of state ρ+3p=0\rho+3p=0 and discuss spherically symmetric solutions for the linear potential equation satisfied by the metric. In this particular case the fluid charge density vanishes and we locate the arising neutral perfect fluid in the intermediate region defined by two thin shells with respective charges QQ and −Q-Q. With its innermost flat and external (Schwarzschild) asymptotically flat spacetime regions, the resultant condenser-like geometries resemble solutions discussed by Cohen and Cohen in a different context. We explore this relationship and point out an exotic gravitational property of our neutral perfect fluid. We mention possible continuations of this study to embrace non-spherically symmetric situations and higher dimensional spacetimes.Comment: 9 page

    Explosive Percolation in the Human Protein Homology Network

    Full text link
    We study the explosive character of the percolation transition in a real-world network. We show that the emergence of a spanning cluster in the Human Protein Homology Network (H-PHN) exhibits similar features to an Achlioptas-type process and is markedly different from regular random percolation. The underlying mechanism of this transition can be described by slow-growing clusters that remain isolated until the later stages of the process, when the addition of a small number of links leads to the rapid interconnection of these modules into a giant cluster. Our results indicate that the evolutionary-based process that shapes the topology of the H-PHN through duplication-divergence events may occur in sudden steps, similarly to what is seen in first-order phase transitions.Comment: 13 pages, 6 figure

    New minimal weight representations for left-to-right window methods

    Get PDF
    Abstract. For an integer w ≄ 2, a radix 2 representation is called a width-w nonadjacent form (w-NAF, for short) if each nonzero digit is an odd integer with absolute value less than 2 w−1, and of any w consecutive digits, at most one is nonzero. In elliptic curve cryptography, the w-NAF window method is used to efficiently compute nP where n is an integer and P is an elliptic curve point. We introduce a new family of radix 2 representations which use the same digits as the w-NAF but have the advantage that they result in a window method which uses less memory. This memory savings results from the fact that these new representations can be deduced using a very simple left-to-right algorithm. Further, we show that like the w-NAF, these new representations have a minimal number of nonzero digits. 1 Window Methods An operation fundamental to elliptic curve cryptography is scalar multiplication; that is, computing nP for an integer, n, and an elliptic curve point, P. A number of different algorithms have been proposed to perform this operation efficiently (see Ch. 3 of [4] for a recent survey). A variety of these algorithms, known as window methods, use the approach described in Algorithm 1.1. For example, suppose D = {0, 1, 3, 5, 7}. Using this digit set, Algorithm 1.1 first computes and stores P, 3P, 5P and 7P. After a D-radix 2 representation of n is computed its digits are read from left to right by the “for ” loop and nP is computed using doubling and addition operations (and no subtractions). One way to compute a D-radix 2 representation of n is to slide a 3-digit window from right to left across the {0, 1}-radix 2 representation of n (see Section 4). Using negative digits takes advantage of the fact that subtracting an elliptic curve point can be done just as efficiently as adding it. Suppose now that D
    • 

    corecore