45,598 research outputs found

    Configurations, and parallelograms associated to centers of mass

    Full text link
    The purpose of this article is to \begin{enumerate} \item define M(t,k)M(t,k) the tt-fold center of mass arrangement for kk points in the plane, \item give elementary properties of M(t,k)M(t,k) and \item give consequences concerning the space M(2,k)M(2,k) of kk distinct points in the plane, no four of which are the vertices of a parallelogram. \end{enumerate} The main result proven in this article is that the classical unordered configuration of kk points in the plane is not a retract up to homotopy of the space of kk unordered distinct points in the plane, no four of which are the vertices of a parallelogram. The proof below is homotopy theoretic without an explicit computation of the homology of these spaces. In addition, a second, speculative part of this article arises from the failure of these methods in the case of odd primes pp. This failure gives rise to a candidate for the localization at odd primes pp of the double loop space of an odd sphere obtained from the pp-fold center of mass arrangement. Potential consequences are listed.Comment: 11 page

    Thermal effects on lattice strain in hcp Fe under pressure

    Full text link
    We compute the c/a lattice strain versus temperature for nonmagnetic hcp iron at high pressures using both first-principles linear response quasiharmonic calculations based on the full potential linear-muffin-tin-orbital (LMTO) method and the particle-in-cell (PIC) model for the vibrational partition function using a tight-binding total-energy method. The tight-binding model shows excellent agreement with the all-electron LMTO method. When hcp structure is stable, the calculated geometric mean frequency and Helmholtz free energy of hcp Fe from PIC and linear response lattice dynamics agree very well, as does the axial ratio as a function of temperature and pressure. On-site anharmonicity proves to be small up to the melting temperature, and PIC gives a good estimate of its sign and magnitude. At low pressures, hcp Fe becomes dynamically unstable at large c/a ratios, and the PIC model might fail where the structure approaches lattice instability. The PIC approximation describes well the vibrational behavior away from the instability, and thus is a reasonable approach to compute high temperature properties of materials. Our results show significant differences from earlier PIC studies, which gave much larger axial ratio increases with increasing temperature, or reported large differences between PIC and lattice dynamics results.Comment: 9 figure

    Eulerian Statistically Preserved Structures in Passive Scalar Advection

    Full text link
    We analyze numerically the time-dependent linear operators that govern the dynamics of Eulerian correlation functions of a decaying passive scalar advected by a stationary, forced 2-dimensional Navier-Stokes turbulence. We show how to naturally discuss the dynamics in terms of effective compact operators that display Eulerian Statistically Preserved Structures which determine the anomalous scaling of the correlation functions. In passing we point out a bonus of the present approach, in providing analytic predictions for the time-dependent correlation functions in decaying turbulent transport.Comment: 10 pages, 10 figures. Submitted to Phys. Rev.

    On the Tomography of Networks and Multicast Trees

    Full text link
    In this paper we model the tomography of scale free networks by studying the structure of layers around an arbitrary network node. We find, both analytically and empirically, that the distance distribution of all nodes from a specific network node consists of two regimes. The first is characterized by rapid growth, and the second decays exponentially. We also show that the nodes degree distribution at each layer is a power law with an exponential cut-off. We obtain similar results for the layers surrounding the root of multicast trees cut from such networks, as well as the Internet. All of our results were obtained both analytically and on empirical Interenet data

    Hyperpolarizabilities for the one-dimensional infinite single-electron periodic systems: II. Dipole-dipole versus current-current correlations

    Full text link
    Based on Takayama-Lin-Liu-Maki model, analytical expressions for the third-harmonic generation, DC Kerr effect, DC-induced second harmonic optical Kerr effect, optical Kerr effect or intensity-dependent index of refraction and DC-electric-field-induced optical rectification are derived under the static current-current(J0J0J_0J_0) correlation for one-dimensional infinite chains. The results of hyperpolarizabilities under J0J0J_0J_0 correlation are then compared with those obtained using the dipole-dipole (DDDD) correlation. The comparison shows that the conventional J0J0J_0J_0 correlation, albeit quite successful for the linear case, is incorrect for studying the nonlinear optical properties of periodic systems.Comment: 11 pages, 5 figure

    Meanfield treatment of Bragg scattering from a Bose-Einstein condensate

    Full text link
    A unified semiclassical treatment of Bragg scattering from Bose-Einstein condensates is presented. The formalism is based on the Gross-Pitaevskii equation driven by classical light fields far detuned from atomic resonance. An approximate analytic solution is obtained and provides quantitative understanding of the atomic momentum state oscillations, as well as a simple expression for the momentum linewidth of the scattering process. The validity regime of the analytic solution is derived, and tested by three dimensional cylindrically symmetric numerical simulations.Comment: 21 pages, 10 figures. Minor changes made to documen

    Polarization entanglement visibility of photon pairs emitted by a quantum dot embedded in a microcavity

    Full text link
    We study the photon emission from a quantum dot embedded in a microcavity. Incoherent pumping of its excitons and biexciton provokes the emission of leaky and cavity modes. By solving a master equation we obtain the correlation functions required to compute the spectrum and the relative efficiency among the emission of pairs and single photons. A quantum regime appears for low pumping and large rate of emission. By means of a post-selection process, a two beams experiment with different linear polarizations could be performed producing a large polarization entanglement visibility precisely in the quantum regime.Comment: 13 pages and 6 figure

    One-mirror Fabry-Perot and one-slit Young interferometry

    Full text link
    We describe a new and distinctive interferometry in which a probe particle scatters off a superposition of locations of a single free target particle. In one dimension, probe particles incident on superposed locations of a single "mirror" can interfere as if in a Fabry-Perot interferometer; in two dimensions, probe particles scattering off superposed locations of a single "slit" can interfere as if in a two-slit Young interferometer. The condition for interference is loss of orthogonality of the target states and reduces, in simple examples, to transfer of orthogonality from target to probe states. We analyze experimental parameters and conditions necessary for interference to be observed.Comment: 5 pages, 2 figures, RevTeX, submitted to PR

    Comment on ``Consistent Sets Yield Contrary Inferences in Quantum Theory''

    Get PDF
    In a recent paper Kent has pointed out that in consistent histories quantum theory it is possible, given initial and final states, to construct two different consistent families of histories, in each of which there is a proposition that can be inferred with probability one, and such that the projectors representing these two propositions are mutually orthogonal. In this note we stress that, according to the rules of consistent history reasoning two such propositions are not contrary in the usual logical sense namely, that one can infer that if one is true then the other is false, and both could be false. No single consistent family contains both propositions, together with the initial and final states, and hence the propositions cannot be logically compared. Consistent histories quantum theory is logically consistent, consistent with experiment as far as is known, consistent with the usual quantum predictions for measurements, and applicable to the most general physical systems. It may not be the only theory with these properties, but in our opinion, it is the most promising among present possibilities.Comment: 2pages, uses REVTEX 3.
    • …
    corecore