We analyze numerically the time-dependent linear operators that govern the
dynamics of Eulerian correlation functions of a decaying passive scalar
advected by a stationary, forced 2-dimensional Navier-Stokes turbulence. We
show how to naturally discuss the dynamics in terms of effective compact
operators that display Eulerian Statistically Preserved Structures which
determine the anomalous scaling of the correlation functions. In passing we
point out a bonus of the present approach, in providing analytic predictions
for the time-dependent correlation functions in decaying turbulent transport.Comment: 10 pages, 10 figures. Submitted to Phys. Rev.