5,521 research outputs found

    Pay Equity: A Child of the 80s Grows Up

    Get PDF

    Temperature can enhance coherent oscillations at a Landau-Zener transition

    Full text link
    We consider sweeping a system through a Landau-Zener avoided-crossing, when that system is also coupled to an environment or noise. Unsurprisingly, we find that decoherence suppresses the coherent oscillations of quantum superpositions of system states, as superpositions decohere into mixed states. However, we also find an effect we call "Lamb-assisted coherent oscillations", in which a Lamb shift exponentially enhances the coherent oscillation amplitude. This dominates for high-frequency environments such as super-Ohmic environments, where the coherent oscillations can grow exponentially as either the environment coupling or temperature are increased. The effect could be used as an experimental probe for high-frequency environments in such systems as molecular magnets, solid-state qubits, spin-polarized gases (neutrons or He3) or Bose-condensates.Comment: 4 Pages & 4 Figs - New version: introduction extended & citations adde

    How Specifiers Learn About Structural Materials

    Get PDF
    Many wood products are underutilized in the construction of nonresidential buildings. To understand better why this is so, a mail survey was conducted in both Canada and the United States to determine how specifiers (arcitects and structural engineers) learn about building materials.Results indicate that, while architectural schools spend an adequate amount of time teaching students about timber design, engineering schools devote little time to teaching wood use as compared to time spent teaching students about steel and concrete. This is despite the fact that over 60% of the specifiers who work on buildings less than five stories in height have designed with wood. However, much of the learning about materials occurs on the job, where the most effective means of education include reading materials, data files, manuals, cororate promotion, and word of mouth. Specifiers who do not currently use wood are likely to be most influenced to do so through the use of physical examples such as demonstration buildings and case studies.Long-term cooperative programs, including lobbying efforts and promotional campaigns, are needed to ensure that material specifiers have the knowledge and training required to be able to use traditional and new wood products that are ideally suited for nonresidential construction in North America

    First Lattice Study of the NN-P11(1440)P_{11}(1440) Transition Form Factors

    Full text link
    Experiments at Jefferson Laboratory, MIT-Bates, LEGS, Mainz, Bonn, GRAAL, and Spring-8 offer new opportunities to understand in detail how nucleon resonance (NN^*) properties emerge from the nonperturbative aspects of QCD. Preliminary data from CLAS collaboration, which cover a large range of photon virtuality Q2Q^2 show interesting behavior with respect to Q2Q^2 dependence: in the region Q21.5GeV2Q^2 \le 1.5 {GeV}^2, both the transverse amplitude, A1/2(Q2)A_{1/2}(Q^2), and the longitudinal amplitude, S1/2(Q2)S_{1/2}(Q^2), decrease rapidly. In this work, we attempt to use first-principles lattice QCD (for the first time) to provide a model-independent study of the Roper-nucleon transition form factor.Comment: 4 pages, 2 figures, double colum

    Spontaneous wettability patterning via creasing instability

    Get PDF
    Surfaces with patterned wettability contrast are important in industrial applications such as heat transfer, water collection, and particle separation. Traditional methods of fabricating such surfaces rely on microfabrication technologies, which are only applicable to certain substrates and are difficult to scale up and implement on curved surfaces. By taking advantage of a mechanical instability on a polyurethane elastomer film, we show that wettability patterns on both flat and curved surfaces can be generated spontaneously via a simple dip coating process. Variations in dipping time, sample prestress, and chemical treatment enable independent control of domain size (from about 100 to 500 μm), morphology, and wettability contrast, respectively. We characterize the wettability contrast using local surface energy measurements via the sessile droplet technique and tensiometry.United States. Army Research Office (Contract W911NF-13-D-0001

    Entangled photons from a strongly coupled quantum dot-cavity system

    Full text link
    A quantum dot strongly coupled to a photonic crystal has been recently proposed as a source of entangled photon pairs [R. Johne et al., Phys. Rev. Lett. 100, 240404 (2008)]. The biexction decay via intermediate polariton states can be used to overcome the natural splitting between the exciton states coupled to the horizontally and vertically polarized light modes, so that high degrees of entanglement can be expected. We investigate theoretically the features of realistic dot-cavity systems, including the effect of the different oscillator strength of excitons resonances coupled to the different polarizations of light. We show that in this case, an independent adjustment of the cavity resonances is needed in order to keep a high entanglement degree. We also consider the case when the biexciton-exciton transition is also strongly coupled to a cavity mode. We show that a very fast emission rate can be achieved allowing the repetition rates in the THz range. Such fast emission should however be paid for by a very complex tuning of the many strongly coupled resonances involved and by a loss of quantum efficiency. Altogether a strongly coupled dot-cavity system seems to be very promising as a source of entangled photon pairs.Comment: 7 pages, 5 figure

    "GiGa": the Billion Galaxy HI Survey -- Tracing Galaxy Assembly from Reionization to the Present

    Full text link
    In this paper, we review the Billion Galaxy Survey that will be carried out at radio--optical wavelengths to micro--nanoJansky levels with the telescopes of the next decades. These are the Low-Frequency Array, the Square Kilometer Array and the Large Synoptic Survey Telescope as survey telescopes, and the Thirty Meter class Telescopes for high spectral resolution+AO, and the James Webb Space Telescope (JWST) for high spatial resolution near--mid IR follow-up. With these facilities, we will be addressing fundamental questions like how galaxies assemble with super-massive black-holes inside from the epoch of First Light until the present, how these objects started and finished the reionization of the universe, and how the processes of star-formation, stellar evolution, and metal enrichment of the IGM proceeded over cosmic time. We also summarize the high-resolution science that has been done thus far on high redshift galaxies with the Hubble Space Telescope (HST). Faint galaxies have steadily decreasing sizes at fainter fluxes and higher redshifts, reflecting the hierarchical formation of galaxies over cosmic time. HST has imaged this process in great structural detail to z<~6. We show that ultradeep radio-optical surveys may slowly approach the natural confusion limit, where objects start to unavoidably overlap because of their own sizes, which only SKA can remedy with HI redshifts for individual sub-clumps. Finally, we summarize how the 6.5 meter James Webb Space Telescope (JWST) will measure first light, reionization, and galaxy assembly in the near--mid-IR.Comment: 8 pages, LaTeX2e requires 'aip' style (included), 8 postscript figures. To appear in the proceedings of the `The Evolution of Galaxies through the Neutral Hydrogen Window' conference, Arecibo Observatory Feb 1-3, 2008; Eds. R. Minchin & E. Momjian, AIP Conf Pro

    UV Imaging Polarimetry of the peculiar Seyfert 2 galaxy Mrk 477

    Get PDF
    We present the results of UV imaging polarimetry of the Seyfert 2 galaxy Mrk 477 taken by the Faint Object Camera onboard the Hubble Space Telescope (HST). From a previous HST UV image (lambda ~ 2180A), Mrk 477 has been known to have a pointlike bright UV hotspot in the central region, peculiar among nearby Seyfert 2 galaxies. There are also claims of UV/optical variability, unusual for a Seyfert 2 galaxy. Our data show that there is an off-nuclear scattering region ~ 0."6 (~ 500 pc) NE from the hotspot. The data, after the subtraction of the instrumental effect due to this bright hotspot region, might indicate that the scattered light is also detected in the central 0."2 radius region and is extended to a very wide angle. The hotspot location is consistent with the symmetry center of the PA pattern, which represents the location of the hidden nucleus, but our data do not provide a strong upper limit to the distance between the symmetry center and the hotspot. We have obtained high spatial resolution color map of the continuum which shows that the nuclear spiral arm of 0."4 scale (~ 300pc) is significantly bluer than the off-nuclear mirror and the hotspot region. The nature of the hotspot is briefly discussed.Comment: To appear in Ap
    corecore