91,275 research outputs found

    Gene expression analysis in microdissected renal tissue - Current challenges and strategies

    Get PDF
    The architecture and compartmentalization of the kidney has stimulated the development of an array of microtechniques to study the functional differences between the distinct nephron segments. With the vast amounts of genomic sequence data now available, the groundwork has been laid for a comprehensive characterization of the molecular pathways defining the differences in nephron function. With the development of sensitive gene expression techniques the tools for a comprehensive molecular analysis of specific renal microenvironments have been provided: Quantitative RT-PCR technologies now allow the analysis of specific mRNAs from as little as single microdissected renal cells. A more global view of gene expression regulation is a logical development from the application of large scale profiling techniques. In this review, we will discuss the power and pitfalls of these approaches, including their potential for the functional characterization of nephron heterogeneity and diagnostic application in renal disease. Copyright (C) 2002 S. Karger AG, Basel

    Study of actinide chemistry in saturated potassium fluoride solution

    Get PDF
    Study concerning the chemistry of actinides in saturated KF solution included work with neptunium, uranium, and americium. Solubilities, absorption spectra, oxidation-reduction reactions, and solid compounds which can be produced in KF solution were examined. The information is used for preparation of various materials from salts of the actinides

    Microscopic chaos and diffusion

    Full text link
    We investigate the connections between microscopic chaos, defined on a dynamical level and arising from collisions between molecules, and diffusion, characterized by a mean square displacement proportional to the time. We use a number of models involving a single particle moving in two dimensions and colliding with fixed scatterers. We find that a number of microscopically nonchaotic models exhibit diffusion, and that the standard methods of chaotic time series analysis are ill suited to the problem of distinguishing between chaotic and nonchaotic microscopic dynamics. However, we show that periodic orbits play an important role in our models, in that their different properties in chaotic and nonchaotic systems can be used to distinguish such systems at the level of time series analysis, and in systems with absorbing boundaries. Our findings are relevant to experiments aimed at verifying the existence of chaoticity and related dynamical properties on a microscopic level in diffusive systems.Comment: 28 pages revtex, 14 figures incorporated with epsfig; see also chao-dyn/9904041; revised to clarify the definition of chaos and include discussion of a mixed model with both square and circular scatterer

    Atmospheric turbulence and superstatistics

    Full text link
    Nonequilibrium systems with large-scale fluctuations of a suitable system parameter are often effectively described by a superposition of two statistics, a superstatistics. Here we illustrate this concept by analysing experimental data of fluctuations in atmospheric wind velocity differences at Florence airport.Comment: 9 pages, 4 figures. New version to appear in Europhysics News (2005

    Geodynamics Branch research report, 1982

    Get PDF
    The research program of the Geodynamics Branch is summarized. The research activities cover a broad spectrum of geoscience disciplines including space geodesy, geopotential field modeling, tectonophysics, and dynamic oceanography. The NASA programs which are supported by the work described include the Geodynamics and Ocean Programs, the Crustal Dynamics Project, the proposed Ocean Topography Experiment (TOPEX) and Geopotential Research Mission. The individual papers are grouped into chapters on Crustal Movements, Global Earth Dynamics, Gravity Field Model Development, Sea Surface Topography, and Advanced Studies

    N-body Monte Carlo simulation of specific lunar orbiter missions

    Get PDF
    N-body Monte Carlo simulation of specific lunar orbiter mission

    The Delta-Delta Intermediate State in 1S0 Nucleon-Nucleon Scattering From Effective Field Theory

    Full text link
    We examine the role of the Delta-Delta intermediate state in low energy NN scattering using effective field theory. Theories both with and without pions are discussed. They are regulated with dimensional regularization and MSbar subtraction. We find that the leading effects of the Delta-Delta state can be absorbed by a redefinition of the contact terms in a theory with nucleons only. It does not remove the requirement of a higher dimension operator to reproduce data out to moderate momentum. The explicit decoupling of the Delta-Delta state is shown for the theory without pions.Comment: 16 pages, 3 figures, uses harvma

    Coherent pumping of a Mott insulator: Fermi golden rule versus Rabi oscillations

    Full text link
    Cold atoms provide a unique arena to study many-body systems far from equilibrium. Furthermore, novel phases in cold atom systems are conveniently investigated by dynamical probes pushing the system out of equilibrium. Here, we discuss the pumping of doubly-occupied sites in a fermionic Mott insulator by a periodic modulation of the hopping amplitude. We show that deep in the insulating phase the many-body system can be mapped onto an effective two-level system which performs coherent Rabi oscillations due to the driving. Coupling the two-level system to the remaining degrees of freedom renders the Rabi oscillations damped. We compare this scheme to an alternative description where the particles are incoherently pumped into a broad continuum.Comment: 4 pages, 3 figure
    • …
    corecore