21,406 research outputs found

    Gauged Fermionic Q-balls

    Full text link
    We present a new model for a non-topological soliton (NTS) that contains interacting fermions, scalar particles and a gauge field. Using a variational approach, we estimate the energy of the localized configuration, showing that it can be the lowest energy state of the system for a wide range of parameters.Comment: 5 pages, 2 figures; revised version to appear in Phys. Rev.

    The Kaon B-parameter in Mixed Action Chiral Perturbation Theory

    Get PDF
    We calculate the kaon B-parameter, B_K, in chiral perturbation theory for a partially quenched, mixed action theory with Ginsparg-Wilson valence quarks and staggered sea quarks. We find that the resulting expression is similar to that in the continuum, and in fact has only two additional unknown parameters. At one-loop order, taste-symmetry violations in the staggered sea sector only contribute to flavor-disconnected diagrams by generating an O(a^2) shift to the masses of taste-singlet sea-sea mesons. Lattice discretization errors also give rise to an analytic term which shifts the tree-level value of B_K by an amount of O(a^2). This term, however, is not strictly due to taste-breaking, and is therefore also present in the expression for B_K for pure G-W lattice fermions. We also present a numerical study of the mixed B_K expression in order to demonstrate that both discretization errors and finite volume effects are small and under control on the MILC improved staggered lattices.Comment: 29 pages, 4 figures; Expanded spurion discussion, other discussions clarified, version to appear in PR

    Evolution of scale-free random graphs: Potts model formulation

    Full text link
    We study the bond percolation problem in random graphs of NN weighted vertices, where each vertex ii has a prescribed weight PiP_i and an edge can connect vertices ii and jj with rate PiPjP_iP_j. The problem is solved by the q1q\to 1 limit of the qq-state Potts model with inhomogeneous interactions for all pairs of spins. We apply this approach to the static model having Piiμ(0<μ<1)P_i\propto i^{-\mu} (0<\mu<1) so that the resulting graph is scale-free with the degree exponent λ=1+1/μ\lambda=1+1/\mu. The number of loops as well as the giant cluster size and the mean cluster size are obtained in the thermodynamic limit as a function of the edge density, and their associated critical exponents are also obtained. Finite-size scaling behaviors are derived using the largest cluster size in the critical regime, which is calculated from the cluster size distribution, and checked against numerical simulation results. We find that the process of forming the giant cluster is qualitatively different between the cases of λ>3\lambda >3 and 2<λ<32 < \lambda <3. While for the former, the giant cluster forms abruptly at the percolation transition, for the latter, however, the formation of the giant cluster is gradual and the mean cluster size for finite NN shows double peaks.Comment: 34 pages, 9 figures, elsart.cls, final version appeared in NP

    Electrical Switching in Metallic Carbon Nanotubes

    Full text link
    We present first-principles calculations of quantum transport which show that the resistance of metallic carbon nanotubes can be changed dramatically with homogeneous transverse electric fields if the nanotubes have impurities or defects. The change of the resistance is predicted to range over more than two orders of magnitude with experimentally attainable electric fields. This novel property has its origin that backscattering of conduction electrons by impurities or defects in the nanotubes is strongly dependent on the strength and/or direction of the applied electric fields. We expect this property to open a path to new device applications of metallic carbon nanotubes.Comment: 4 pages and 4 figure

    A Solvable Model for Many Quark Systems in QCD Hamiltonians

    Full text link
    Motivated by a canonical, QCD Hamiltonian we propose an effective Hamiltonian to represent an arbitrary number of quarks in hadronic bags. The structure of the effective Hamiltonian is discussed and the BCS-type solutions that may represent constituent quarks are presented. The single particle orbitals are chosen as 3-dimensional harmonic oscillators and we discuss a class of exact solutions that can be obtained when a subset of single-particle basis states is restricted to include a certain number of orbital excitations. The general problem, which includes all possible orbital states, can also be solved by combining analytical and numerical methods.Comment: 24 pages, 2 figures, research articl

    Chemical abundance anticorrelations in globular cluster stars: The effect on cluster integrated spectra

    Full text link
    It is widely accepted that individual Galactic globular clusters harbor two coeval generations of stars, the first one born with the `standard' α\alpha-enhanced metal mixture observed in field Halo objects, the second one characterized by an anticorrelated CN-ONa abundance pattern overimposed on the first generation, α\alpha-enhanced metal mixture. We have investigated with appropriate stellar population synthesis models how this second generation of stars affects the integrated spectrum of a typical metal rich Galactic globular cluster, like 47\,Tuc, focusing our analysis on the widely used Lick-type indices. We find that the only indices appreciably affected by the abundance anticorrelations are Ca4227, G4300, CN1{\rm CN_1}, CN2{\rm CN_2} and NaD. The age-sensitive Balmer line, Fe line and the [MgFe] indices widely used to determine age, Fe and total metallicity of extragalactic systems are largely insensitive to the second generation population. Enhanced He in second generation stars affects also the Balmer line indices of the integrated spectra, through the change of the turn off temperature and -- in the assumption that the mass loss history of both stellar generations is the same -- the horizontal branch morphology of the underlying isochrones.Comment: Accepted for publication in Ap

    Quantum Monte Carlo Calculations of Pion Scattering from Li

    Full text link
    We show that the neutron and proton transition densities predicted by recent quantum Monte Carlo calculations for A=6,7 nuclei are consistent with pion scattering from 6Li and 7Li at energies near the Delta resonance. This has provided a microscopic understanding of the enhancement factors for quadrople excitations, which were needed to describe pion inelastic scattering within the nuclear shell model of Cohen and Kurath.Comment: 10 pages, REVTeX, 3 postscript figures; added calculation of elastic and inelastic pion scattering from 6Li at multiple energie

    Fermion and Anti-Fermion Effective Masses in High Temperature Gauge Theories in CPCP-Asymmetric Background

    Full text link
    We calculate the splitting between fermion and anti-fermion effective masses in high temperature gauge theories in the presence of a non-vanishing chemical potential due to the CPCP-asymmetric fermionic background. In particular we consider the case of left-handed leptons in the SU(2)U(1)SU(2)\otimes U(1) theory when the temperature is above 250250 GeV and the gauge symmetry is restored.Comment: 13 pages, TIPAC-93001
    corecore