11,233 research outputs found

    Changes in Dark Matter Properties After Freeze-Out

    Full text link
    The properties of the dark matter that determine its thermal relic abundance can be very different from the dark matter properties today. We investigate this possibility by coupling a dark matter sector to a scalar that undergoes a phase transition after the dark matter freezes out. If the value of Omega_DM h^2 calculated from parameters measured at colliders and by direct and indirect detection experiments does not match the astrophysically observed value, a novel cosmology of this type could provide the explanation. This mechanism also has the potential to account for the "boost factor" required to explain the PAMELA data.Comment: 5 pages; v2: Fixed minor typo, added short discussion of application to PAMELA and appropriate references, results unchange

    Monetary benefits of preventing childhood lead poisoning with lead-safe window replacement

    Get PDF
    Previous estimates of childhood lead poisoning prevention benefits have quantified the present value of some health benefits, but not the costs of lead paint hazard control or the benefits associated with housing and energy markets. Because older housing with lead paint constitutes the main exposure source today in the U.S., we quantify health benefits, costs, market value benefits, energy savings, and net economic benefits of lead-safe window replacement (which includes paint stabilization and other measures). The benefit per resident child from improved lifetime earnings alone is 21,195inpre1940housingand21,195 in pre-1940 housing and 8,685 in 1940-59 housing (in 2005 dollars). Annual energy savings are 130to130 to 486 per housing unit, with or without young resident children, with an associated increase in housing market value of 5,900to5,900 to 14,300 per housing unit, depending on home size and number of windows replaced. Net benefits are 4,490to4,490 to 5,629 for each housing unit built before 1940, and 491to491 to 1,629 for each unit built from 1940-1959, depending on home size and number of windows replaced. Lead-safe window replacement in all pre-1960 U.S. housing would yield net benefits of at least $67 billion, which does not include many other benefits. These other benefits, which are shown in this paper, include avoided Attention Deficit Hyperactivity Disorder, other medical costs of childhood lead exposure, avoided special education, and reduced crime and juvenile delinquency in later life. In addition, such a window replacement effort would reduce peak demand for electricity, carbon emissions from power plants, and associated long-term costs of climate change.Lead Poisoning, IQ, Energy Efficiency, Cost Benefit Analysis, Housing, Climate Change

    X-ray spectral diagnostics of activity in massive stars

    Full text link
    X-rays give direct evidence of instabilities, time-variable structure, and shock heating in the winds of O stars. The observed broad X-ray emission lines provide information about the kinematics of shock-heated wind plasma, enabling us to test wind-shock models. And their shapes provide information about wind absorption, and thus about the wind mass-loss rates. Mass-loss rates determined from X-ray line profiles are not sensitive to density-squared clumping effects, and indicate mass-loss rate reductions of factors of 3 to 6 over traditional diagnostics that suffer from density-squared effects. Broad-band X-ray spectral energy distributions also provide mass-loss rate information via soft X-ray absorption signatures. In some cases, the degree of wind absorption is so high that the hardening of the X-ray SED can be quite significant. We discuss these results as applied to the early O stars zeta Pup (O4 If), 9 Sgr (O4 V((f))), and HD 93129A (O2 If*).Comment: To appear in the proceedings of IAU 272: Active OB Star

    X-ray, UV and optical analysis of supergiants: ϵ\epsilon Ori

    Get PDF
    We present a multi-wavelength (X-ray to optical) analysis, based on non-local thermodynamic equilibrium photospheric+wind models, of the B0 Ia-supergiant: ϵ\epsilon~Ori. The aim is to test the consistency of physical parameters, such as the mass-loss rate and CNO abundances, derived from different spectral bands. The derived mass-loss rate is M˙/f\dot{M}/\sqrt{f_\infty}\sim1.6×\times106^{-6} M_\odot yr1^{-1} where ff_\infty is the volume filling factor. However, the S IV λλ\lambda\lambda1062,1073 profiles are too strong in the models; to fit the observed profiles it is necessary to use f<f_\infty<0.01. This value is a factor of 5 to 10 lower than inferred from other diagnostics, and implies M˙1×107\dot{M} \lesssim1 \times 10^{-7} M_\odot yr1^{-1}. The discrepancy could be related to porosity-vorosity effects or a problem with the ionization of sulfur in the wind. To fit the UV profiles of N V and O VI it was necessary to include emission from an interclump medium with a density contrast (ρcl/ρICM\rho_{cl}/\rho_{ICM}) of \sim100. X-ray emission in H-He like and Fe L lines was modeled using four plasma components located within the wind. We derive plasma temperatures from 1×1061 \times 10^{6} to 7×1067\times 10^{6} K, with lower temperatures starting in the outer regions (R0_0\sim3-6 R_*), and a hot component starting closer to the star (R0_0\lesssim2.9 R_*). From X-ray line profiles we infer M˙<4.9×107\dot{M} <\, 4.9\times10^{-7} M_\odot yr1^{-1}. The X-ray spectrum (\geq0.1 kev) yields an X-ray luminosity LX2.0×107LbolL_{\rm X}\sim 2.0\times10^{-7} L_{\rm bol}, consistent with the superion line profiles. X-ray abundances are in agreement with those derived from the UV and optical analysis: ϵ\epsilon Ori is slightly enhanced in nitrogen and depleted in carbon and oxygen, evidence for CNO processed material.Comment: 33 pages, 25 figures. Accepted for publication in MNRA

    Relativistic Quantum Mechanics and Relativistic Entanglement in the Rest-Frame Instant Form of Dynamics

    Full text link
    A new formulation of relativistic quantum mechanics is proposed in the framework of the rest-frame instant form of dynamics with its instantaneous Wigner 3-spaces and with its description of the particle world-lines by means of derived non-canonical predictive coordinates. In it we quantize the frozen Jacobi data of the non-local 4-center of mass and the Wigner-covariant relative variables in an abstract (frame-independent) internal space whose existence is implied by Wigner-covariance. The formalism takes care of the properties of both relativistic bound states and scattering ones. There is a natural solution to the \textit{relativistic localization problem}. The non-relativistic limit leads to standard quantum mechanics but with a frozen Hamilton-Jacobi description of the center of mass. Due to the \textit{non-locality} of the Poincar\'e generators the resulting theory of relativistic entanglement is both \textit{kinematically non-local and spatially non-separable}: these properties, absent in the non-relativistic limit, throw a different light on the interpretation of the non-relativistic quantum non-locality and of its impact on foundational problems.Comment: 73 pages, includes revision
    corecore