93 research outputs found

    DNA G-quadruplexes in the human genome: detection, functions and therapeutic potential.

    Get PDF
    Single-stranded guanine-rich DNA sequences can fold into four-stranded DNA structures called G-quadruplexes (G4s) that arise from the self-stacking of two or more guanine quartets. There has been considerable recent progress in the detection and mapping of G4 structures in the human genome and in biologically relevant contexts. These advancements, many of which align with predictions made previously in computational studies, provide important new insights into the functions of G4 structures in, for example, the regulation of transcription and genome stability, and uncover their potential relevance for cancer therapy.The Balasubramanian laboratory is core-funded by Cancer Research UK (C14303/A17197) and further supported by a Cancer Research UK programme grant (C9681/A18618). S.B. is a Wellcome Trust Senior Investigator (099232/Z/12/Z)

    Selective inhibition of the human tie-1 promoter with triplex-forming oligonucleotides targeted to ets binding sites

    Get PDF
    The Tie receptors (Tie-1 and Tie-2/Tek) are essential for angiogenesis and vascular remodeling/integrity. Tie receptors are up-regulated in tumor-associated endothelium, and their inhibition disrupts angiogenesis and can prevent tumor growth as a consequence. To investigate the potential of anti-gene approaches to inhibit tie gene expression for anti-angiogenic therapy, we have examined triple-helical (triplex) DNA formation at 2 tandem Ets transcription factor binding motifs (designated E-1 and E-2) in the human tie-1 promoter. Various tie-1 promoter deletion/mutation luciferase reporter constructs were generated and transfected into endothelial cells to examine the relative activities of E-1 and E-2. The binding of antiparallel and parallel (control) purine motif oligonucleotides (21-22 bp) targeted to E-1 and E-2 was assessed by plasmid DNA fragment binding and electrophoretic mobility shift assays. Triplex-forming oligonucleotides were incubated with tie-1 reporter constructs and transfected into endothelial cells to determine their activity. The Ets binding motifs in the E-1 sequence were essential for human tie-1 promoter activity in endothelial cells, whereas the deletion of E-2 had no effect. Antiparallel purine motif oligonucleotides targeted at E-1 or E-2 selectively formed strong triplex DNA (K(d) approximately 10(-7) M) at 37 degrees C. Transfection of tie-1 reporter constructs with triplex DNA at E-1, but not E-2, specifically inhibited tie-1 promoter activity by up to 75% compared with control oligonucleotides in endothelial cells. As similar multiple Ets binding sites are important for the regulation of several endothelial-restricted genes, this approach may have broad therapeutic potential for cancer and other pathologies involving endothelial proliferation/dysfunction

    Inhibition of Multidrug Resistance by SV40 Pseudovirion Delivery of an Antigene Peptide Nucleic Acid (PNA) in Cultured Cells

    Get PDF
    Peptide nucleic acid (PNA) is known to bind with extraordinarily high affinity and sequence-specificity to complementary nucleic acid sequences and can be used to suppress gene expression. However, effective delivery into cells is a major obstacle to the development of PNA for gene therapy applications. Here, we present a novel method for the in vitro delivery of antigene PNA to cells. By using a nucleocapsid protein derived from Simian virus 40, we have been able to package PNA into pseudovirions, facilitating the delivery of the packaged PNA into cells. We demonstrate that this system can be used effectively to suppress gene expression associated with multidrug resistance in cancer cells, as shown by RT-PCR, flow cytometry, Western blotting, and cell viability under chemotherapy. The combination of PNA with the SV40-based delivery system is a method for suppressing a gene of interest that could be broadly applied to numerous targets

    G-Quadruplex DNA Sequences Are Evolutionarily Conserved and Associated with Distinct Genomic Features in Saccharomyces cerevisiae

    Get PDF
    G-quadruplex DNA is a four-stranded DNA structure formed by non-Watson-Crick base pairing between stacked sets of four guanines. Many possible functions have been proposed for this structure, but its in vivo role in the cell is still largely unresolved. We carried out a genome-wide survey of the evolutionary conservation of regions with the potential to form G-quadruplex DNA structures (G4 DNA motifs) across seven yeast species. We found that G4 DNA motifs were significantly more conserved than expected by chance, and the nucleotide-level conservation patterns suggested that the motif conservation was the result of the formation of G4 DNA structures. We characterized the association of conserved and non-conserved G4 DNA motifs in Saccharomyces cerevisiae with more than 40 known genome features and gene classes. Our comprehensive, integrated evolutionary and functional analysis confirmed the previously observed associations of G4 DNA motifs with promoter regions and the rDNA, and it identified several previously unrecognized associations of G4 DNA motifs with genomic features, such as mitotic and meiotic double-strand break sites (DSBs). Conserved G4 DNA motifs maintained strong associations with promoters and the rDNA, but not with DSBs. We also performed the first analysis of G4 DNA motifs in the mitochondria, and surprisingly found a tenfold higher concentration of the motifs in the AT-rich yeast mitochondrial DNA than in nuclear DNA. The evolutionary conservation of the G4 DNA motif and its association with specific genome features supports the hypothesis that G4 DNA has in vivo functions that are under evolutionary constraint
    • …
    corecore