1,056 research outputs found

    Local symmetry properties of pure 3-qubit states

    Get PDF
    Entanglement types of pure states of 3 qubits are classified by means of their stabilisers in the group of local unitary operations. It is shown that the stabiliser is generically discrete, and that a larger stabiliser indicates a stationary value for some local invariant. We describe all the exceptional states with enlarged stabilisers.Comment: 32 pages, 5 encapsulated PostScript files for 3 figures. Published version, with minor correction

    Unified Solution of the Expected Maximum of a Random Walk and the Discrete Flux to a Spherical Trap

    Full text link
    Two random-walk related problems which have been studied independently in the past, the expected maximum of a random walker in one dimension and the flux to a spherical trap of particles undergoing discrete jumps in three dimensions, are shown to be closely related to each other and are studied using a unified approach as a solution to a Wiener-Hopf problem. For the flux problem, this work shows that a constant c = 0.29795219 which appeared in the context of the boundary extrapolation length, and was previously found only numerically, can be derived explicitly. The same constant enters in higher-order corrections to the expected-maximum asymptotics. As a byproduct, we also prove a new universal result in the context of the flux problem which is an analogue of the Sparre Andersen theorem proved in the context of the random walker's maximum.Comment: Two figs. Accepted for publication, Journal of Statistical Physic

    Natural Thermal and Magnetic Entanglement in 1D Heisenberg Model

    Full text link
    We investigate the entanglement between any two spins in a one dimensional Heisenberg chain as a function of temperature and the external magnetic field. We find that the entanglement in an antiferromagnetic chain can be increased by increasing the temperature or the external field. Increasing the field can also create entanglement between otherwise disentangled spins. This entanglement can be confirmed by testing Bell's inequalities involving any two spins in the solid.Comment: 4 pages, 5 figure

    Parallel transport in an entangled ring

    Get PDF
    This paper defines a notion of parallel transport in a lattice of quantum particles, such that the transformation associated with each link of the lattice is determined by the quantum state of the two particles joined by that link. We focus particularly on a one-dimensional lattice--a ring--of entangled rebits, which are binary quantum objects confined to a real state space. We consider states of the ring that maximize the correlation between nearest neighbors, and show that some correlation must be sacrificed in order to have non-trivial parallel transport around the ring. An analogy is made with lattice gauge theory, in which non-trivial parallel transport around closed loops is associated with a reduction in the probability of the field configuration. We discuss the possibility of extending our result to qubits and to higher dimensional lattices.Comment: 31 pages, no figures; v2 includes a new example of a qubit rin

    Quantum cobwebs: Universal entangling of quantum states

    Full text link
    Entangling an unknown qubit with one type of reference state is generally impossible. However, entangling an unknown qubit with two types of reference states is possible. To achieve this, we introduce a new class of states called zero sum amplitude (ZSA) multipartite, pure entangled states for qubits and study their salient features. Using shared-ZSA state, local operation and classical communication we give a protocol for creating multipartite entangled states of an unknown quantum state with two types of reference states at remote places. This provides a way of encoding an unknown pure qubit state into a multiqubit entangled state. We quantify the amount of classical and quantum resources required to create universal entangled states. This is possibly a strongest form of quantum bit hiding with multiparties.Comment: Invited talk in II Winter Institute on FQTQO: Quantum Information Processing, held at S. N. Bose Center for Basic Science, Kolkata, during Jan 2-11, 2002. (To appear in Pramana-J. of Physics, 2002.

    A bipartite class of entanglement monotones for N-qubit pure states

    Full text link
    We construct a class of algebraic invariants for N-qubit pure states based on bipartite decompositions of the system. We show that they are entanglement monotones, and that they differ from the well know linear entropies of the sub-systems. They therefore capture new information on the non-local properties of multipartite systems.Comment: 6 page

    Entangled Rings

    Get PDF
    Consider a ring of N qubits in a translationally invariant quantum state. We ask to what extent each pair of nearest neighbors can be entangled. Under certain assumptions about the form of the state, we find a formula for the maximum possible nearest-neighbor entanglement. We then compare this maximum with the entanglement achieved by the ground state of an antiferromagnetic ring consisting of an even number of spin-1/2 particles. We find that, though the antiferromagnetic ground state does not maximize the nearest-neighbor entanglement relative to all other states, it does so relative to other states having zero z-component of spin.Comment: 19 pages, no figures; v2 includes new results; v3 corrects a numerical error for the case N=

    Three-qubit pure-state canonical forms

    Full text link
    In this paper we analyze the canonical forms into which any pure three-qubit state can be cast. The minimal forms, i.e. the ones with the minimal number of product states built from local bases, are also presented and lead to a complete classification of pure three-qubit states. This classification is related to the values of the polynomial invariants under local unitary transformations by a one-to-one correspondence.Comment: REVTEX, 9 pages, 1 figur

    Distributed Entanglement

    Get PDF
    Consider three qubits A, B, and C which may be entangled with each other. We show that there is a trade-off between A's entanglement with B and its entanglement with C. This relation is expressed in terms of a measure of entanglement called the "tangle," which is related to the entanglement of formation. Specifically, we show that the tangle between A and B, plus the tangle between A and C, cannot be greater than the tangle between A and the pair BC. This inequality is as strong as it could be, in the sense that for any values of the tangles satisfying the corresponding equality, one can find a quantum state consistent with those values. Further exploration of this result leads to a definition of the "three-way tangle" of the system, which is invariant under permutations of the qubits.Comment: 13 pages LaTeX; references added, derivation of Eq. (11) simplifie
    • …
    corecore