294 research outputs found

    A Stochastic Model of Fragmentation in Dynamic Storage Allocation

    Get PDF
    We study a model of dynamic storage allocation in which requests for single units of memory arrive in a Poisson stream at rate λ and are accommodated by the first available location found in a linear scan of memory. Immediately after this first-fit assignment, an occupied location commences an exponential delay with rate parameter μ, after which the location again becomes available. The set of occupied locations (identified by their numbers) at time t forms a random subset St of {1,2, . . .}. The extent of the fragmentation in St, i.e. the alternating holes and occupied regions of memory, is measured by (St) - |St |. In equilibrium, the number of occupied locations, |S|, is known to be Poisson distributed with mean ρ = λ/μ. We obtain an explicit formula for the stationary distribution of max (S), the last occupied location, and by independent arguments we show that (E max (S) - E|S|)/E|S| → 0 as the traffic intensity ρ → ∞. Moreover, we verify numerically that for any ρ the expected number of wasted locations in equilibrium is never more than 1/3 the expected number of occupied locations. Our model applies to studies of fragmentation in paged computer systems, and to containerization problems in industrial storage applications. Finally, our model can be regarded as a simple concrete model of interacting particles [Adv. Math., 5 (1970), pp. 246–290]

    A Stochastic Model of Fragmentation in Dynamic Storage Allocation

    Full text link

    Orthogonal Packings in Two Dimensions

    Full text link

    A Parallel, Backjumping Subgraph Isomorphism Algorithm Using Supplemental Graphs

    Get PDF
    This registry entry contains a reference to the code, data and experimental scripts needed to reproduce the subgraph isomorphism paper: Ciaran McCreesh and Patrick Prosser, "A Parallel, Backjumping Subgraph Isomorphism Algorithm using Supplemental Graphs". To appear at the 21st International Conference on Principles and Practice of Constraint Programming (CP 2015)

    Delegation and coordination with multiple threshold public goods: experimental evidence

    Get PDF
    When multiple charities, social programs and community projects simultaneously vie for funding, donors risk mis-coordinating their contributions leading to an inefficient distribution of funding across projects. Community chests and other intermediary organizations facilitate coordination among donors and reduce such risks. To study this, we extend a threshold public goods framework to allow donors to contribute through an intermediary rather than directly to the public goods. Through a series of experiments, we show that the presence of an intermediary increases public good success and subjects’ earnings only when the intermediary is formally committed to direct donations to socially beneficial goods. Without such a restriction, the presence of an intermediary has a negative impact, complicating the donation environment, decreasing contributions and public good success.When multiple charities, social programs and community projects simultaneously vie for funding, donors risk mis-coordinating their contributions leading to an inefficient distribution of funding across projects. Community chests and other intermediary organizations facilitate coordination among donors and reduce such risks. To study this, we extend a threshold public goods framework to allow donors to contribute through an intermediary rather than directly to the public goods. Through a series of experiments, we show that the presence of an intermediary increases public good success and subjects’ earnings only when the intermediary is formally committed to direct donations to socially beneficial goods. Without such a restriction, the presence of an intermediary has a negative impact, complicating the donation environment, decreasing contributions and public good success

    Src Kinases Are Required for a Balanced Production of IL-12/IL-23 in Human Dendritic Cells Activated by Toll-Like Receptor Agonists

    Get PDF
    BACKGROUND: Pathogen recognition by dendritic cells (DC) is crucial for the initiation of both innate and adaptive immune responses. Activation of Toll-like Receptors (TLRs) by microbial molecular patterns leads to the maturation of DC, which present the antigen and activate T cells in secondary lymphoid tissues. Cytokine production by DC is critical for shaping the adaptive immune response by regulating T helper cell differentiation. It was previously shown by our group that Src kinases play a key role in cytokines production during TLR4 activation in human DC. PRINCIPAL FINDINGS: In this work we investigated the role of Src kinases during different TLRs triggering in human monocyte-derived DC (MoDC). We found that Src family kinases are important for a balanced production of inflammatory cytokines by human MoDC upon stimulation of TLR3 and 8 with their respective agonists. Disruption of this equilibrium through pharmacological inhibition of Src kinases alters the DC maturation pattern. In particular, while expression of IL-12 and other inflammatory cytokines depend on Src kinases, the induction of IL-23 and co-stimulatory molecules do not. Accordingly, DC treated with Src inhibitors are not compromised in their ability to induce CD4 T cell proliferation and to promote the Th17 subset survival but are less efficient in inducing Th1 differentiation. CONCLUSIONS: We suggest that the pharmacological modulation of DC maturation has the potential to shape the quality of the adaptive immune response and could be exploited for the treatment of inflammation-related diseases

    First Observation of τ3πηντ\tau\to 3\pi\eta\nu_{\tau} and τf1πντ\tau\to f_{1}\pi\nu_{\tau} Decays

    Full text link
    We have observed new channels for τ\tau decays with an η\eta in the final state. We study 3-prong tau decays, using the ηγγ\eta\to\gamma\gamma and \eta\to 3\piz decay modes and 1-prong decays with two \piz's using the ηγγ\eta\to\gamma\gamma channel. The measured branching fractions are \B(\tau^{-}\to \pi^{-}\pi^{-}\pi^{+}\eta\nu_{\tau}) =(3.4^{+0.6}_{-0.5}\pm0.6)\times10^{-4} and \B(\tau^{-}\to \pi^{-}2\piz\eta\nu_{\tau} =(1.4\pm0.6\pm0.3)\times10^{-4}. We observe clear evidence for f1ηππf_1\to\eta\pi\pi substructure and measure \B(\tau^{-}\to f_1\pi^{-}\nu_{\tau})=(5.8^{+1.4}_{-1.3}\pm1.8)\times10^{-4}. We have also searched for η(958)\eta'(958) production and obtain 90% CL upper limits \B(\tau^{-}\to \pi^{-}\eta'\nu_\tau)<7.4\times10^{-5} and \B(\tau^{-}\to \pi^{-}\piz\eta'\nu_\tau)<8.0\times10^{-5}.Comment: 11 page postscript file, postscript file also available through http://w4.lns.cornell.edu/public/CLN

    Search for the Decays B^0 -> D^{(*)+} D^{(*)-}

    Full text link
    Using the CLEO-II data set we have searched for the Cabibbo-suppressed decays B^0 -> D^{(*)+} D^{(*)-}. For the decay B^0 -> D^{*+} D^{*-}, we observe one candidate signal event, with an expected background of 0.022 +/- 0.011 events. This yield corresponds to a branching fraction of Br(B^0 -> D^{*+} D^{*-}) = (5.3^{+7.1}_{-3.7}(stat) +/- 1.0(syst)) x 10^{-4} and an upper limit of Br(B^0 -> D^{*+} D^{*-}) D^{*\pm} D^\mp and B^0 -> D^+ D^-, no significant excess of signal above the expected background level is seen, and we calculate the 90% CL upper limits on the branching fractions to be Br(B^0 -> D^{*\pm} D^\mp) D^+ D^-) < 1.2 x 10^{-3}.Comment: 12 page postscript file also available through http://w4.lns.cornell.edu/public/CLNS, submitted to Physical Review Letter

    ΛΛˉ\Lambda\bar{\Lambda} Production in Two-Photon Interactions at CLEO

    Full text link
    Using the CLEO detector at the Cornell e+ee^+e^- storage ring, CESR, we study the two-photon production of ΛΛˉ\Lambda \bar{\Lambda}, making the first observation of γγΛΛˉ\gamma \gamma \to \Lambda \bar{\Lambda}. We present the cross-section for γγΛΛˉ \gamma \gamma \to \Lambda \bar{\Lambda} as a function of the γγ\gamma \gamma center of mass energy and compare it to that predicted by the quark-diquark model.Comment: 10 pages, postscript file also available through http://w4.lns.cornell.edu/public/CLN
    corecore