4,504 research outputs found
On the Radial Distribution of White Dwarfs in the Globular Cluster NGC 6397
We have examined the radial distribution of white dwarfs over a single
HST/ACS field in the nearby globular cluster NGC 6397. In relaxed populations,
such as in a globular cluster, stellar velocity dispersion, and hence radial
distribution, is directly dependent on stellar masses. The progenitors of very
young cluster white dwarfs had a mass of ~0.8 solar masses, while the white
dwarfs themselves have a mass of ~0.5 solar masses. We thus expect young white
dwarfs to have a concentrated radial distribution (like that of their
progenitors) that becomes more extended over several relaxation times to mimic
that of ~0.5 solar mass main-sequence stars. However, we observe young white
dwarfs to have a significantly extended radial distribution compared to both
the most massive main sequence stars in the cluster and also to old white
dwarfs.Comment: 13 pages including 1 table and 3 figures. Accepted for publication in
the MNRAS Letter
Optical Conductivity in a Two-Band Superconductor: Pb
We demonstrate the effect of bandstructure on the superconducting properties
of Pb by calculating the strong-coupling features in the optical conductivity,
, due to the electron-phonon interaction. The importance of
momentum dependence in the calculation of the properties of superconductors has
previously been raised for MgB. Pb resembles MgB in that it is a two
band superconductor in which the bands' contributions to the Fermi surface have
very different topologies. We calculate by calculating a
memory function which has been recently used to analyze of
BiSrCaCuO. In our calculations the two components of
the Fermi surface are described by parameterizations of de Haas--van Alphen
data. We use a phonon spectrum which is a fit to neutron scattering data. By
including the momentum dependence of the Fermi surface good agreement is found
with the experimentally determined strong-coupling features which can be
described by a broad peak at around 4.5 meV and a narrower higher peak around 8
meV of equal height. The calculated features are found to be dominated by
scattering between states within the third band. By contrast scattering between
states in the second band leads to strong-coupling features in which the height
of the high energy peak is reduced by compared to that of the low
energy peak. This result is similar to that in the conventional isotropic
(momentum independent) treatment of superconductivity. Our results show that it
is important to use realistic models of the bandstructure and phonons, and to
avoid using momentum averaged quantities, in calculations in order to get
quantitatively accurate results
Accurate Results from Perturbation Theory for Strongly Frustrated Heisenberg Spin Clusters
We investigate the use of perturbation theory in finite sized frustrated spin
systems by calculating the effect of quantum fluctuations on coherent states
derived from the classical ground state. We first calculate the ground and
first excited state wavefunctions as a function of applied field for a 12-site
system and compare with the results of exact diagonalization. We then apply the
technique to a 20-site system with the same three fold site coordination as the
12-site system. Frustration results in asymptotically convergent series for
both systems which are summed with Pad\'e approximants.
We find that at zero magnetic field the different connectivity of the two
systems leads to a triplet first excited state in the 12-site system and a
singlet first excited state in the 20-site system, while the ground state is a
singlet for both. We also show how the analytic structure of the Pad\'e
approximants at evolves in the complex plane at
the values of the applied field where the ground state switches between spin
sectors and how this is connected with the non-trivial dependence of the
number on the strength of quantum fluctuations. We discuss the origin
of this difference in the energy spectra and in the analytic structures. We
also characterize the ground and first excited states according to the values
of the various spin correlation functions.Comment: Final version, accepted for publication in Physical review
Manifestation of nonequilibrium initial conditions in molecular rotation: the generalized J-diffusion model
In order to adequately describe molecular rotation far from equilibrium, we
have generalized the J-diffusion model by allowing the rotational relaxation
rate to be angular momentum dependent. The calculated nonequilibrium rotational
correlation functions (CFs) are shown to decay much slower than their
equilibrium counterparts, and orientational CFs of hot molecules exhibit
coherent behavior, which persists for several rotational periods. As distinct
from the results of standard theories, rotational and orientational CFs are
found to dependent strongly on the nonequilibrium preparation of the molecular
ensemble. We predict the Arrhenius energy dependence of rotational relaxation
times and violation of the Hubbard relations for orientational relaxation
times. The standard and generalized J-diffusion models are shown to be almost
indistinguishable under equilibrium conditions. Far from equilibrium, their
predictions may differ dramatically
Adiabatic and Non-Adiabatic Contributions to the Free Energy from the Electron-Phonon Interaction for Na, K, Al, and Pb
We calculate the adiabatic contributions to the free energy due to the
electron--phonon interaction at intermediate temperatures, for the elemental metals Na, K, Al, and Pb. Using our
previously published results for the nonadiabatic contributions we show that
the adiabatic contribution, which is proportional to at low
temperatures and goes as at high temperatures, dominates the
nonadiabatic contribution for temperatures above a cross--over temperature,
, which is between 0.5 and 0.8 , where is the melting
temperature of the metal. The nonadiabatic contribution falls as for
temperatures roughly above the average phonon frequency.Comment: Updated versio
The Quantum Mechanics of Hyperion
This paper is motivated by the suggestion [W. Zurek, Physica Scripta, T76,
186 (1998)] that the chaotic tumbling of the satellite Hyperion would become
non-classical within 20 years, but for the effects of environmental
decoherence. The dynamics of quantum and classical probability distributions
are compared for a satellite rotating perpendicular to its orbital plane,
driven by the gravitational gradient. The model is studied with and without
environmental decoherence. Without decoherence, the maximum quantum-classical
(QC) differences in its average angular momentum scale as hbar^{2/3} for
chaotic states, and as hbar^2 for non-chaotic states, leading to negligible QC
differences for a macroscopic object like Hyperion. The quantum probability
distributions do not approach their classical limit smoothly, having an
extremely fine oscillatory structure superimposed on the smooth classical
background. For a macroscopic object, this oscillatory structure is too fine to
be resolved by any realistic measurement. Either a small amount of smoothing
(due to the finite resolution of the apparatus) or a very small amount of
environmental decoherence is sufficient ensure the classical limit. Under
decoherence, the QC differences in the probability distributions scale as
(hbar^2/D)^{1/6}, where D is the momentum diffusion parameter. We conclude that
decoherence is not essential to explain the classical behavior of macroscopic
bodies.Comment: 17 pages, 24 figure
Organic molecules in the protoplanetary disk of DG Tau revealed by ALMA
Planets form in protoplanetary disks and inherit their chemical compositions.
It is thus crucial to map the distribution and investigate the formation of
simple organics, such as formaldehyde and methanol, in protoplanetary disks. We
analyze ALMA observations of the nearby disk-jet system around the T Tauri star
DG Tau in the o-HCO and CHOH E,
A transitions at an unprecedented resolution of ,
i.e., au at a distance of 121 pc. The HCO emission originates from
a rotating ring extending from au with a peak at au, i.e., at
the edge of the 1.3mm dust continuum. CHOH emission is not detected down to
an r.m.s. of 3 mJy/beam in the 0.162 km/s channel. Assuming an ortho-to-para
ratio of 1.8-2.8 the ring- and disk-height-averaged HCO column density is
cm, while that of CHOH is
cm. In the inner au no o-HCO emission
is detected with an upper limit on its beam-averaged column density of
cm. The HCO ring in the disk of DG Tau is
located beyond the CO iceline (R au). This suggests that the
HCO abundance is enhanced in the outer disk due to formation on grain
surfaces by the hydrogenation of CO ice. The emission peak at the edge of the
mm dust continuum may be due to enhanced desorption of HCO in the gas phase
caused by increased UV penetration and/or temperature inversion. The
CHOH/HCO abundance ratio is , in agreement with disk chemistry
models. The inner edge of the HCO ring coincides with the radius where the
polarization of the dust continuum changes orientation, hinting at a tight link
between the HCO chemistry and the dust properties in the outer disk and at
the possible presence of substructures in the dust distribution.Comment: 8 pages, 6 figures, accepted for publication on A&A Letter
Fokker-Planck and Landau-Lifshitz-Bloch Equations for Classical Ferromagnets
A macroscopic equation of motion for the magnetization of a ferromagnet at
elevated temperatures should contain both transverse and longitudinal
relaxation terms and interpolate between Landau-Lifshitz equation at low
temperatures and the Bloch equation at high temperatures. It is shown that for
the classical model where spin-bath interactions are described by stochastic
Langevin fields and spin-spin interactions are treated within the mean-field
approximation (MFA), such a ``Landau-Lifshitz-Bloch'' (LLB) equation can be
derived exactly from the Fokker-Planck equation, if the external conditions
change slowly enough. For weakly anisotropic ferromagnets within the MFA the
LLB equation can be written in a macroscopic form based on the free-energy
functional interpolating between the Landau free energy near T_C and the
``micromagnetic'' free energy, which neglects changes of the magnetization
magnitude |{\bf M}|, at low temperatures.Comment: 9 pages, no figures, a small error correcte
Relaxation time effects on dynamic conductivity of alloyed metallic thin films in the infrared band
The behavior of nanoscale infrared antenna elements depends upon the dynamic conductivity of thin metallic films. Spectroscopic ellipsometer measurements of noble metal films show that when the product of the incident radiation frequency and the relaxation time is greater than unity, anomalous dynamic electron transport effects occur. In this regime electron scattering increases the conductivity of alloyed metallic films as demonstrated by ellipsometry measurements of films from the Au-Cu system. A binary alloy thin film was fabricated with equal parts of Au and Cu, and the dynamic conductivity was measured to be 300% larger than the high frequency conductivity of pure Au or pure Cu films at wavelengths in the 3-5 mu m band. When electronic scattering is reduced, ellipsometer measurements of Au and Cu films taken near 4 K demonstrate that the IR conductivity decreases to 20% of the value measured at 300 K at wavelengths in the 3-5 mu m band. Using measured dc relaxation times, a model to explain deviations from Drude behavior was developed using the theory of the anomalous skin effect and frequency dependent relaxation time. This model was in quantitative agreement with the measured data. The ability to design an alloyed metallic thin film using a calculated ideal dc relaxation time to produce the greatest possible dynamic conductivity for infrared antennas and metamaterials was demonstrated
Rotation and activity of pre-main-sequence stars
We present a study of rotation (vsini) and chromospheric activity (Halpha EW)
based on an extensive set of high-resolution optical spectra obtained with MIKE
on the 6.5m Magellan Clay telescope. Our targets are 74 F-M dwarfs in the young
stellar associations Eta Cha, TW Hydrae, Beta Pic, and Tuc-Hor, spanning ages
from 6 to 30 Myr. While the Halpha EW for most F and G stars are consistent
with pure photospheric absorption, most K and M stars show chromospheric
emission. By comparing Halpha EW in our sample to results in the literature, we
see a clear evolutionary sequence: Chromospheric activity declines steadily
from the T Tauri phase to the main sequence. Using activity as an age
indicator, we find a plausible age range for the Tuc-Hor association of 10-40
Myr. Between 5 and 30 Myr, we do not see evidence for rotational braking in the
total sample, thus angular momentum is conserved, in contrast to younger stars.
This difference indicates a change in the rotational regulation at 5-10 Myr,
possibly because disk braking cannot operate longer than typical disk
lifetimes, allowing the objects to spin up. The rotation-activity relation is
flat in our sample; in contrast to main-sequence stars, there is no linear
correlation for slow rotators. We argue that this is because young stars
generate their magnetic fields in a fundamentally different way from
main-sequence stars, and not just the result of a saturated solar-type dynamo.
By comparing our rotational velocities with published rotation periods for a
subset of stars, we determine ages of 13 (7-20) Myr and 9 (7-17} Myr for the
Eta Cha and TWA associations, respectively, consistent with previous estimates.
Thus we conclude that stellar radii from evolutionary models by Baraffe et al.
(1998) are in agreement with the observed radii within +-15%. (abridged)Comment: 40 pages, 8 figures, ApJ, in pres
- …