3,098 research outputs found
Stochastic dynamics beyond the weak coupling limit: thermalization
We discuss the structure and asymptotic long-time properties of coupled
equations for the moments of a Brownian particle's momentum derived
microscopically beyond the lowest approximation in the weak coupling parameter.
Generalized fluctuation-dissipation relations are derived and shown to ensure
convergence to thermal equilibrium at any order of perturbation theory.Comment: 6+ page
Transient rectification of Brownian diffusion with asymmetric initial distribution
In an ensemble of non-interacting Brownian particles, a finite systematic
average velocity may temporarily develop, even if it is zero initially. The
effect originates from a small nonlinear correction to the dissipative force,
causing the equation for the first moment of velocity to couple to moments of
higher order. The effect may be relevant when a complex system dissociates in a
viscous medium with conservation of momentum
Integral Relaxation Time of Single-Domain Ferromagnetic Particles
The integral relaxation time \tau_{int} of thermoactivating noninteracting
single-domain ferromagnetic particles is calculated analytically in the
geometry with a magnetic field H applied parallel to the easy axis. It is shown
that the drastic deviation of \tau_{int}^{-1} from the lowest eigenvalue of the
Fokker-Planck equation \Lambda_1 at low temperatures, starting from some
critical value of H, is the consequence of the depletion of the upper potential
well. In these conditions the integral relaxation time consists of two
competing contributions corresponding to the overbarrier and intrawell
relaxation processes.Comment: 8 pages, 3 figure
The Quantum Mechanics of Hyperion
This paper is motivated by the suggestion [W. Zurek, Physica Scripta, T76,
186 (1998)] that the chaotic tumbling of the satellite Hyperion would become
non-classical within 20 years, but for the effects of environmental
decoherence. The dynamics of quantum and classical probability distributions
are compared for a satellite rotating perpendicular to its orbital plane,
driven by the gravitational gradient. The model is studied with and without
environmental decoherence. Without decoherence, the maximum quantum-classical
(QC) differences in its average angular momentum scale as hbar^{2/3} for
chaotic states, and as hbar^2 for non-chaotic states, leading to negligible QC
differences for a macroscopic object like Hyperion. The quantum probability
distributions do not approach their classical limit smoothly, having an
extremely fine oscillatory structure superimposed on the smooth classical
background. For a macroscopic object, this oscillatory structure is too fine to
be resolved by any realistic measurement. Either a small amount of smoothing
(due to the finite resolution of the apparatus) or a very small amount of
environmental decoherence is sufficient ensure the classical limit. Under
decoherence, the QC differences in the probability distributions scale as
(hbar^2/D)^{1/6}, where D is the momentum diffusion parameter. We conclude that
decoherence is not essential to explain the classical behavior of macroscopic
bodies.Comment: 17 pages, 24 figure
Optical Conductivity in a Two-Band Superconductor: Pb
We demonstrate the effect of bandstructure on the superconducting properties
of Pb by calculating the strong-coupling features in the optical conductivity,
, due to the electron-phonon interaction. The importance of
momentum dependence in the calculation of the properties of superconductors has
previously been raised for MgB. Pb resembles MgB in that it is a two
band superconductor in which the bands' contributions to the Fermi surface have
very different topologies. We calculate by calculating a
memory function which has been recently used to analyze of
BiSrCaCuO. In our calculations the two components of
the Fermi surface are described by parameterizations of de Haas--van Alphen
data. We use a phonon spectrum which is a fit to neutron scattering data. By
including the momentum dependence of the Fermi surface good agreement is found
with the experimentally determined strong-coupling features which can be
described by a broad peak at around 4.5 meV and a narrower higher peak around 8
meV of equal height. The calculated features are found to be dominated by
scattering between states within the third band. By contrast scattering between
states in the second band leads to strong-coupling features in which the height
of the high energy peak is reduced by compared to that of the low
energy peak. This result is similar to that in the conventional isotropic
(momentum independent) treatment of superconductivity. Our results show that it
is important to use realistic models of the bandstructure and phonons, and to
avoid using momentum averaged quantities, in calculations in order to get
quantitatively accurate results
Classical Langevin dynamics of a charged particle moving on a sphere and diamagnetism: A surprise
It is generally known that the orbital diamagnetism of a classical system of
charged particles in thermal equilibrium is identically zero -- the Bohr-van
Leeuwen theorem. Physically, this null result derives from the exact
cancellation of the orbital diamagnetic moment associated with the complete
cyclotron orbits of the charged particles by the paramagnetic moment subtended
by the incomplete orbits skipping the boundary in the opposite sense. Motivated
by this crucial, but subtle role of the boundary, we have simulated here the
case of a finite but \emph{unbounded} system, namely that of a charged particle
moving on the surface of a sphere in the presence of an externally applied
uniform magnetic field. Following a real space-time approach based on the
classical Langevin equation, we have computed the orbital magnetic moment which
now indeed turns out to be non-zero, and has the diamagnetic sign. To the best
of our knowledge, this is the first report of the possibility of finite
classical diamagnetism in principle, and it is due to the avoided cancellation.Comment: Accepted for publication in EP
A bulk 2D Pauli Limited Superconductor
We present a nearly perfect Pauli-limited critical field phase diagram for
the anisotropic organic superconductor \-(ET)NH(SCN) when
the applied magnetic field is oriented parallel to the conducting layers. The
critical fields ({H_{c_2}) were found by use of penetration depth
measurements. Because {H_{c_2} is Pauli-limited, the size of the
superconducting energy gap can be calculated. The role of spin-orbit scattering
and many-body effects play a role in explaining our measurements.Comment: 4 pages, 5 figures. V5, corrections were made to the text, present
data was include
Manifestation of nonequilibrium initial conditions in molecular rotation: the generalized J-diffusion model
In order to adequately describe molecular rotation far from equilibrium, we
have generalized the J-diffusion model by allowing the rotational relaxation
rate to be angular momentum dependent. The calculated nonequilibrium rotational
correlation functions (CFs) are shown to decay much slower than their
equilibrium counterparts, and orientational CFs of hot molecules exhibit
coherent behavior, which persists for several rotational periods. As distinct
from the results of standard theories, rotational and orientational CFs are
found to dependent strongly on the nonequilibrium preparation of the molecular
ensemble. We predict the Arrhenius energy dependence of rotational relaxation
times and violation of the Hubbard relations for orientational relaxation
times. The standard and generalized J-diffusion models are shown to be almost
indistinguishable under equilibrium conditions. Far from equilibrium, their
predictions may differ dramatically
Rotation and activity of pre-main-sequence stars
We present a study of rotation (vsini) and chromospheric activity (Halpha EW)
based on an extensive set of high-resolution optical spectra obtained with MIKE
on the 6.5m Magellan Clay telescope. Our targets are 74 F-M dwarfs in the young
stellar associations Eta Cha, TW Hydrae, Beta Pic, and Tuc-Hor, spanning ages
from 6 to 30 Myr. While the Halpha EW for most F and G stars are consistent
with pure photospheric absorption, most K and M stars show chromospheric
emission. By comparing Halpha EW in our sample to results in the literature, we
see a clear evolutionary sequence: Chromospheric activity declines steadily
from the T Tauri phase to the main sequence. Using activity as an age
indicator, we find a plausible age range for the Tuc-Hor association of 10-40
Myr. Between 5 and 30 Myr, we do not see evidence for rotational braking in the
total sample, thus angular momentum is conserved, in contrast to younger stars.
This difference indicates a change in the rotational regulation at 5-10 Myr,
possibly because disk braking cannot operate longer than typical disk
lifetimes, allowing the objects to spin up. The rotation-activity relation is
flat in our sample; in contrast to main-sequence stars, there is no linear
correlation for slow rotators. We argue that this is because young stars
generate their magnetic fields in a fundamentally different way from
main-sequence stars, and not just the result of a saturated solar-type dynamo.
By comparing our rotational velocities with published rotation periods for a
subset of stars, we determine ages of 13 (7-20) Myr and 9 (7-17} Myr for the
Eta Cha and TWA associations, respectively, consistent with previous estimates.
Thus we conclude that stellar radii from evolutionary models by Baraffe et al.
(1998) are in agreement with the observed radii within +-15%. (abridged)Comment: 40 pages, 8 figures, ApJ, in pres
- …