6,061 research outputs found

    Langevin dynamics in crossed magnetic and electric fields: Hall and diamagnetic fluctuations

    Get PDF
    Based on the classical Langevin equation, we have re-visited the problem of orbital motion of a charged particle in two dimensions for a normal magnetic field crossed with or without an in-plane electric bias. We are led to two interesting fluctuation effects: First, we obtain not only a longitudinal "work-fluctuation" relation as expected for a barotropic type system, but also a transverse work-fluctuation relation perpendicular to the electric bias. This "Hall fluctuation" involves the product of the electric and the magnetic fields. And second, for the case of harmonic confinement without bias, the calculated probability density for the orbital magnetic moment gives non-zero even moments, not derivable as field derivatives of the classical free energy.Comment: 4 pages, 2 figures, revised versio

    Molecular Characterisation of Bacteriophage K Towards Applications for the Biocontrol of Pathogenic Staphylococci

    Get PDF
    End of project reportThe aim of this work was to characterise staphylococcal bacteriophage (a bacterial virus) and to assess their potential as therapeutic agents against pathogenic strains of Staphylococcus aureus, particularly mastitis-causing strains. The project included the use of two newly isolated phage CS1 and DW2, and an existing polyvalent phage. The new phage were isolated from the farmyard and characterised by electron microscopy and restriction analysis. Both phage were shown to belong to the Siphoviridae family and were lytic for representatives of all three clonal groups of Irish mastitis-associated staphylococci. A cocktail of three phage (CS1, DW2 and K) at 108 (plaque forming units) PFU/ml was infused into cows teats in animal trials. The lack of an increase in somatic cell counts in milks indicated strongly that the phage did not irritate the animal. In addition, the most potent phage used in this study, phage K, was further studied by genome sequencing, which revealed a linear DNA genome of 127,395 base pairs, which encodes 118 putative ORFs (open reading frames)

    Monte Carlo simulation with time step quantification in terms of Langevin dynamics

    Full text link
    For the description of thermally activated dynamics in systems of classical magnetic moments numerical methods are desirable. We consider a simple model for isolated magnetic particles in a uniform field with an oblique angle to the easy axis of the particles. For this model, a comparison of the Monte Carlo method with Langevin dynamics yields new insight in the interpretation of the Monte Carlo process, leading to the implementation of a new algorithm where the Monte Carlo step is time-quantified. The numeric results for the characteristic time of the magnetisation reversal are in excellent agreement with asymptotic solutions which itself are in agreement with the exact numerical results obtained from the Fokker-Planck equation for the Neel-Brown model.Comment: 5 pages, Revtex, 4 Figures include

    Magnetic susceptibility of a CuO2 plane in the La2CuO4 system: I. RPA treatment of the Dzyaloshinskii-Moriya Interactions

    Full text link
    Motivated by recent experiments on undoped La2CuO4, which found pronounced temperature-dependent anisotropies in the low-field magnetic susceptibility, we have investigated a two-dimensional square lattice of S=1/2 spins that interact via Heisenberg exchange plus the symmetric and anti-symmetric Dzyaloshinskii-Moriya anisotropies. We describe the transition to a state with long-ranged order, and find the spin-wave excitations, with a mean-field theory, linear spin-wave analysis, and using Tyablikov's RPA decoupling scheme. We find the different components of the susceptibility within all of these approximations, both below and above the N'eel temperature, and obtain evidence of strong quantum fluctuations and spin-wave interactions in a broad temperature region near the transition.Comment: 20 pages, 2 column format, 22 figure

    On the Radial Distribution of White Dwarfs in the Globular Cluster NGC 6397

    Full text link
    We have examined the radial distribution of white dwarfs over a single HST/ACS field in the nearby globular cluster NGC 6397. In relaxed populations, such as in a globular cluster, stellar velocity dispersion, and hence radial distribution, is directly dependent on stellar masses. The progenitors of very young cluster white dwarfs had a mass of ~0.8 solar masses, while the white dwarfs themselves have a mass of ~0.5 solar masses. We thus expect young white dwarfs to have a concentrated radial distribution (like that of their progenitors) that becomes more extended over several relaxation times to mimic that of ~0.5 solar mass main-sequence stars. However, we observe young white dwarfs to have a significantly extended radial distribution compared to both the most massive main sequence stars in the cluster and also to old white dwarfs.Comment: 13 pages including 1 table and 3 figures. Accepted for publication in the MNRAS Letter

    Physical properties of the jet from DG Tauri on sub-arcsecond scales with HST/STIS

    Full text link
    We derive the physical properties at the base of the jet from DG Tau both along and across the flow and as a function of velocity. We analysed seven optical spectra of the DG Tau jet, taken with the Hubble Space Telescope Imaging Spectrograph. The spectra were obtained by placing a long-slit parallel to the jet axis and stepping it across the jet width. The resulting position-velocity diagrams in optical forbidden emission lines allowed access to plasma conditions via calculation of emission line ratios. We find at the base of the jet high electron density, nen_e \sim 105^5, and very low ionisation, xe0.020.05x_e \sim 0.02-0.05, which combine to give a total density up to nHn_H \sim 3 106^6. This analysis confirms previous reports of variations in plasma parameters along the jet, (i.e. decrease in density by several orders of magnitude, increase of xex_e from 0.05 to a plateau at 0.7 downstream at 2'' from the star). Furthermore, a spatial coincidence is revealed between sharp gradients in the total density and supersonic velocity jumps. This strongly suggests that the emission is caused by shock excitation. The position-velocity diagrams indicate the presence of both fast accelerating gas and slower, less collimated material. We derive the mass outflow rate, M˙j\dot{M}_j, in the blue-shifted lobe in different velocity channels, that contribute to a total of M˙j\dot{M}_j \sim 8 ±\pm 4 109^{-9} M_\odot yr1^{-1}. We estimate that a symmetric bipolar jet would transport at the low and intermediate velocities probed by rotation measurements, an angular momentum flux of L˙j\dot{L}_j \sim 2.9 ±\pm 1.5 106^{-6} M_\odot yr1^{-1} AU km s1^{-1}. The derived properties of the DG Tau jet are demonstrated to be consistent with magneto-centrifugal theory. However, non-stationary modelling is required in order to explain all of the features revealed at high resolution.Comment: 16 pages, 18 figure

    Tradition and Prudence in Locke's Exceptions to Toleration

    Get PDF
    Why did Locke exclude Catholics and atheists from toleration? Not, I contend, because he was trapped by his context, but because his prudential approach and practica ljudgments led him to traditiona ltexts. I make this argumentfirst by outlining the connections among prudential exceptionality, practical judgments, and traditional texts. I then describe important continuities betweenc onventional English understandings of the relationship between state and religion and Locke's writings on toleration, discuss Locke's conception of rights, and illustrate his use of prudential exceptions and distinctions. I conclude by arguing that Locke's problems are relevant to assessingc ontemporary liberal discussions of tolerationa nd the separation of state and religion that lean heavily on practical justification

    Accurate Results from Perturbation Theory for Strongly Frustrated S=1/2S=1/2 Heisenberg Spin Clusters

    Full text link
    We investigate the use of perturbation theory in finite sized frustrated spin systems by calculating the effect of quantum fluctuations on coherent states derived from the classical ground state. We first calculate the ground and first excited state wavefunctions as a function of applied field for a 12-site system and compare with the results of exact diagonalization. We then apply the technique to a 20-site system with the same three fold site coordination as the 12-site system. Frustration results in asymptotically convergent series for both systems which are summed with Pad\'e approximants. We find that at zero magnetic field the different connectivity of the two systems leads to a triplet first excited state in the 12-site system and a singlet first excited state in the 20-site system, while the ground state is a singlet for both. We also show how the analytic structure of the Pad\'e approximants at λ1|\lambda| \simeq 1 evolves in the complex λ\lambda plane at the values of the applied field where the ground state switches between spin sectors and how this is connected with the non-trivial dependence of the number on the strength of quantum fluctuations. We discuss the origin of this difference in the energy spectra and in the analytic structures. We also characterize the ground and first excited states according to the values of the various spin correlation functions.Comment: Final version, accepted for publication in Physical review

    The circumstellar environment of HD50138 revealed by VLTI/AMBER at high angular resolution

    Full text link
    HD50138 is a Herbig B[e] star with a circumstellar disc detected at IR and mm wavelength. Its brightness makes it a good candidate for NIR interferometry observations. We aim to resolve, spatially and spectrally, the continuum and hydrogen emission lines in the 2.12-2.47 micron region, to shed light on the immediate circumstellar environment of the star. VLTI/AMBER K-band observations provide spectra, visibilities, differential phases, and closure phases along three long baselines for the continuum, and HI emission in Brγ\gamma and five high-n Pfund lines. By computing the pure-line visibilities, we derive the angular size of the different line-emitting regions. A simple LTE model was created to constrain the physical conditions of HI emitting region. The continuum region cannot be reproduced by a geometrical 2D elongated Gaussian fitting model. We estimate the size of the region to be 1 au. We find the Brγ\gamma and Pfund lines come from a more compact region of size 0.4 au. The Brγ\gamma line exhibits an S-shaped differential phase, indicative of rotation. The continuum and Brγ\gamma line closure phase show offsets of \sim-25±\pm5 o^o and 20±\pm10o^o, respectively. This is evidence of an asymmetry in their origin, but with opposing directions. We find that we cannot converge on constraints for the HI physical parameters without a more detailed model. Our analysis reveals that HD50138 hosts a complex circumstellar environment. Its continuum emission cannot be reproduced by a simple disc brightness distribution. Similarly, several components must be evoked to reproduce the interferometric observables within the Brγ\gamma, line. Combining the spectroscopic and interferometric data of the Brγ\gamma and Pfund lines favours an origin in a wind region with a large opening angle. Finally, our results point to an evolved source.Comment: accepted for publication in A&
    corecore