87 research outputs found

    Estuarine behaviour of European silver eel (<i>Anguilla anguilla</i>) in the Scheldt estuary

    Get PDF
    Estuaries are among the most productive ecosystems in the world and are characterised by high habitat diversity. As transition areas between inland rivers and the open sea, they function as transport zones for diadromous species like the European eel (Anguilla anguilla), a catadromous fish species that migrates to the Sargasso Sea for spawning. However, information on the migratory behaviour of eel in estuaries is scarce. Therefore, more insight is needed to efficiently restore and conserve the species. We tracked 47 eels with acoustic telemetry between July 2012 and October 2015 and analysed their behaviour from the Braakman creek into the Scheldt Estuary, separated by a tidal barrier. Eels arrived in the Braakman between mid-summer and early winter and stayed there on average 44 days (0 - 578 days). As such, arrival in the Scheldt Estuary was much later: between early autumn and early winter. The average residence time in the Scheldt Estuary was considerably shorter than in the Braakman, and was only five days (0 - 64 days). The long residence time in the Braakman was probably due to the discontinuous operation of the tidal barrier, which is used to control the water level in the upstream wetland area. This resulted in a discontinuous flow conditions, leading to searching behaviour in eels. Eventually 37 eels did pass the sluice and reached the Scheldt Estuary; the 10 eels which did not pass the sluice were probably caught by a commercial eel fisherman in the Braakman creek. In the Scheldt Estuary, 26 eels migrated towards the sea, whereas eight took the opposite direction and three were only detected at the first receivers downstream of the sluice. The eight eels that did not migrate towards the sea showed estuarine retention behaviour. They could have been injured by the tidal barrier or missed the right moment to migrate, and could be waiting in the estuary until favourable conditions are met to proceed their journey. Our results indicate that eel migration is obstructed by a tidal barrier, which resulted in delayed eel migration. As the migratory period occurred from mid-summer to early winter, this information can be implemented in management plans such as environmental windows to open the sluice during eel migration if circumstances allow such measurements

    Fish Behaviour in the Vicinity of a Navigation Lock Complex: the Challenges

    Get PDF
    Hydraulic structures such as navigation locks, pumping stations and hydropower plants play an important role in navigation, water management and sustainable energy production. However, these structures may severely impact the aquatic ecosystem and freshwater fish in particular. In Belgium, the Albert Canal connecting the river Meuse to the river Scheldt, is an important migration route for European eel (Anguilla anguilla, critically endangered) and Atlantic salmon (Salmo salar, vulnerable). Both species have a downstream migrating phase in their lifecycle (respectively silver eels and salmon smolts), during which they are hampered by hydraulic structures. In the coming years, Archimedes screws are to be installed at the navigation lock complexes present in the Flemish part of the canal, which can function both as pumping stations and hydropower generators. A first installation is already present at the navigation lock complex of Kwaadmechelen. Before fish mitigation measures can be implemented, it is important to gain understanding on how the downstream migrating fish are affected by hydrodynamics around the complex. In this paper, we focus on the challenges in investigating fish behaviour, related to the acoustic telemetry used to determine fish positions, as well as on the complexity of a hydrodynamic CFD model for the studied site. Additionally, we present some preliminary results. In the next phase of the research, observed fine-scale behaviour of the fish in front of the navigation lock complex will be compared with predicted flow patterns by means of a CFD model

    First detection and energy measurement of recoil ions following beta decay in a Penning trap with the WITCH experiment

    Full text link
    The WITCH experiment (Weak Interaction Trap for CHarged particles) will search for exotic interactions by investigating the beta-neutrino angular correlation via the measurement of the recoil energy spectrum after beta decay. As a first step the recoil ions from the beta-minus decay of 124In stored in a Penning trap have been detected. The evidence for the detection of recoil ions is shown and the properties of the ion cloud that forms the radioactive source for the experiment in the Penning trap are presented.Comment: 9 pages, 6 figures (9 figure files), submitted to European Physical Journal
    corecore