28 research outputs found

    The design and application of a small-scale corn degerming process for the recovery of transgenic products from corn seeds.

    Get PDF
    This thesis presents the issues involved in designing a small-scale com seed degerming process based on large-scale principals, its characterisation and optimisation using the method of statistical experimental design and analysis, and its application to the processing of different types of com seed. During the early stages of process development for the extraction and purification of recombinant proteins produced in genetically modified crops, scarce quantities of material limit the extent of process investigations at pilot-scale. The small-scale degerming process was therefore designed for the development of a process suitable for handling small quantities of transgenic com. This process consisted of a small-scale degerming device, followed by a separation process consisting of roller-milling and sieving, capable of processing 50 seeds (approximately 12g). Successful degerming of transgenic com seed separated oil-and protein-rich germ (waste stream) from the product-containing endosperm fraction (product stream) of the seed. Oil content and mass of the product and waste streams were used to assess and compare degerming quality between all seed types. The degermer and separation process design were based on the principal operating factors identified in the large-scale operations used in com dry milling. Both operating factors and material properties affected the quality of degerming. The factors which had the largest impact on degerming were the degermer disk clearance, roller-milling and seed moisture content. Maximum degerming and separation, consisting of product stream containing 32.5% seed oil in 90.2% seed mass, occurred at a seed moisture content of 21%, (w/w), a disc clearance of 9mm, and three stages of roller-milling. Variation in quality between seed types was shown to affect degerming quality when operating the degermer under constant conditions. Five different types of seed were processed through the small-scale degermer. Two were transgenic, and three were non-transgenic, and one of these was additionally processed through a pilot-scale Beall degermer. The small-scale com degerming process was shown to separate seed fractions from all varieties of seeds processed. The greatest difference in quality of small-scale degerming between these different seed types was between the 'high quality' non-transgenic hybrid and either of the two transgenic seed types. Better degerming was achieved using the high-quality seed hybrid (detailed above) than the transgenic seed (84.2% seed mass, 46.8% seed oil) when processed using the optimised operating conditions. The quality of degerming that could be achieved using the pilot-scale Beall and small-scale degermers was compared using the 'low quality' non-transgenic seeds, which were physically the most similar to the transgenic seeds. The small-scale degerming process was shown to separate a greater proportion of germ from the endosperm, represented by the high mass of lower oil content product stream (81.5% seed mass, 29.3% seed oil) than that seed which had been degermed using the pilot-scale Beall degermer (92.5% seed mass, 64.3% seed oil)

    When Do Stalled Stars Resume Spinning Down? Advancing Gyrochronology with Ruprecht 147

    Get PDF
    Recent measurements of rotation periods () in the benchmark open clusters Praesepe (670 Myr), NGC 6811 (1 Gyr), and NGC 752 (1.4 Gyr) demonstrate that, after converging onto a tight sequence of slowly rotating stars in mass-period space, stars temporarily stop spinning down. These data also show that the duration of this epoch of stalled spin-down increases toward lower masses. To determine when stalled stars resume spinning down, we use data from the K2 mission and the Palomar Transient Factory to measure for 58 dwarf members of the 2.7 Gyr old cluster Ruprecht 147, 39 of which satisfy our criteria designed to remove short-period or near-equal-mass binaries. Combined with the Kepler data for the approximately coeval cluster NGC 6819 (30 stars with M ∗ > 0.85, our new measurements more than double the number of ≈2.5 Gyr benchmark rotators and extend this sample down to ≈0.55. The slowly rotating sequence for this joint sample appears relatively flat (22 ± 2 days) compared to sequences for younger clusters. This sequence also intersects the Kepler intermediate-period gap, demonstrating that this gap was not created by a lull in star formation. We calculate the time at which stars resume spinning down and find that 0.55 stars remain stalled for at least 1.3 Gyr. To accurately age-date low-mass stars in the field, gyrochronology formulae must be modified to account for this stalling timescale. Empirically tuning a core-envelope coupling model with open cluster data can account for most of the apparent stalling effect. However, alternative explanations, e.g., a temporary reduction in the magnetic braking torque, cannot yet be ruled out

    Polymorphism: an evaluation of the potential risk to the quality of drug products from the FarmĂĄcia Popular Rede PrĂłpria

    Full text link

    Music at Manoa, volume 1, number 1

    No full text
    Publication dated "Fall 1982

    Music at Manoa, volume 1, number 2

    No full text
    Publication dated "Spring 1983

    Music at Manoa, volume 2, number 1

    No full text
    Publication dated "Fall 1983
    corecore