29 research outputs found

    On the reactivity and selectivity of donor glycosides in glycochemistry and glycobiology:trapped covalent intermediates

    Get PDF
    The reactivity of sugar donors and the stability of covalent intermediates formed in both chemical and biological systems is an active subject of study in both glycochemistry and glycobiology. Knowledge of the structure of these intermediates is vital for understanding reactivity and stereoselectivity in glycosidic bond formation, and in glycosidic bond destruction in the case of enzymatic hydrolysis. For chemical reactions, tuning of the electron-withdrawing power of the carbohydrate side chains allows for stabilization of covalent anomeric triflates thereby enabling chemo-, regio- and stereoselective glycosylations. Retaining glycosidase-mediated hydrolysis reactions in turn often involve a covalent intermediate. The existence of such covalent intermediates was convincingly demonstrated at the beginning of this century by making use of modified glycosyl substrates tuned such that stable adducts are formed efficiently but the ensuing hydrolysis is slowed down. Recently this concept has also been used in the design of glycosidase activity-based probes. This review describes recent investigations on different carbohydrate decoration patterns to influence both chemical and biological reactivity and selectivity

    P. aeruginosa SGNH Hydrolase-Like Proteins AlgJ and AlgX Have Similar Topology but Separate and Distinct Roles in Alginate Acetylation

    Get PDF
    The O-acetylation of polysaccharides is a common modification used by pathogenic organisms to protect against external forces. Pseudomonas aeruginosa secretes the anionic, O-acetylated exopolysaccharide alginate during chronic infection in the lungs of cystic fibrosis patients to form the major constituent of a protective biofilm matrix. Four proteins have been implicated in the O-acetylation of alginate, AlgIJF and AlgX. To probe the biological function of AlgJ, we determined its structure to 1.83 Ã… resolution. AlgJ is a SGNH hydrolase-like protein, which while structurally similar to the N-terminal domain of AlgX exhibits a distinctly different electrostatic surface potential. Consistent with other SGNH hydrolases, we identified a conserved catalytic triad composed of D190, H192 and S288 and demonstrated that AlgJ exhibits acetylesterase activity in vitro. Residues in the AlgJ signature motifs were found to form an extensive network of interactions that are critical for O-acetylation of alginate in vivo. Using two different electrospray ionization mass spectrometry (ESI-MS) assays we compared the abilities of AlgJ and AlgX to bind and acetylate alginate. Binding studies using defined length polymannuronic acid revealed that AlgJ exhibits either weak or no detectable polymer binding while AlgX binds polymannuronic acid specifically in a length-dependent manner. Additionally, AlgX was capable of utilizing the surrogate acetyl-donor 4-nitrophenyl acetate to catalyze the O-acetylation of polymannuronic acid. Our results, combined with previously published in vivo data, suggest that the annotated O-acetyltransferases AlgJ and AlgX have separate and distinct roles in O-acetylation. Our refined model for alginate acetylation places AlgX as the terminal acetlytransferase and provides a rationale for the variability in the number of proteins required for polysaccharide O-acetylation

    Chair interconversion and reactivity of mannuronic acid esters

    No full text
    Mannopyranosyluronic acids display a very unusual conformation behavior in that they often prefer to adopt a C-1(4) chair conformation. They are endowed with a strikingly high reactivity when used in a glycosylation reaction as a glycosyl donor. To investigate the unusual conformational behavior a series of mannuronic acid ester derivatives, comprising anomeric triflate species and O-methyl glycosides, was examined by dynamic NMR experiments, through lineshape analysis of H-1 and F-19 NMR spectra at various temperatures from -80 degrees C to 0 degrees C. Exchange rates between C-4(1) and C-1(4) chair conformations were found to depend on the electronic properties and the size of the C2 substituent (F, N-3 or OBn) and the aglycon, with higher exchange rates for the glycosyl triflates and smaller C2 substituents. Low temperature F-19 exchange spectroscopy experiments showed that the covalently bound anomeric triflates did not exchange with free triflate species present in the reaction mixture. To relate the conformational behavior of the intermediate triflates to their reactivity in a glycosylation reaction, their relative reactivity was determined via competition reactions monitored by H-1 NMR spectroscopy at low temperature. The 2-O-benzyl ether compound was found to be most reactive whereas the 2-fluoro compound - the most flexible of the studied compounds - was least reactive. Whereas the ring-flip of the mannuronic acids is important for the enhanced reactivity of the donors, the rate of the ring-flip has little influence on the relative reactivity

    Mannosazide Methyl Uronate Donors. Glycosylating Properties and Use in the Construction of beta-ManNAcA-Containing Oligosaccharides

    No full text
    Mannosazide methyl uronate donors equipped with a variety of anomeric leaving groups (beta- and a-S-phenyl, beta- and alpha-N-phenyltrifluoroacetimidates, hydroxyl, P-sulfoxide, and (R-s)- and (S-s)-alpha-sulfoxides) were subjected to activating conditions, and the results were monitored by H-1 NMR. While the S-phenyl and imidate donors all gave a conformational mixture of anomeric alpha-triflates, the hemiacetal and beta- and alpha-sulfoxides produced an oxosulfonium triflate and beta- and alpha-sulfonium bistriflates, respectively. The beta-S-phenyl mannosazide methyl uronate performed best in both activation experiments and glycosylation studies and provided the 1,2-cis mannosidic linkage with excellent selectivity. Consequently, an alpha-Glc-(l -> 4)-,beta-ManN(3)A-SPh disaccharide, constructed by the stereo-selective glycosylation of a 6-O-Fmoc-protected glucoside and beta-S-phenyl mannosazide methyl uronate, was used as the repetitive donor building block in the synthesis of tri-, penta-, and heptasaccharide fragments corresponding to the Micrococcus luteus teichuronic acid

    Uronic Acids in Oligosaccharide and Glycoconjugate Synthesis

    No full text
    This chapter describes the assembly of uronic acid containing oligosaccharides and glycoconjugates. Two strategies are available to access these target molecules, namely a pre-glycosylation oxidation approach, in which uronic acid building blocks are used, and a post-glycosylation oxidation strategy, which employs an oxidation step after the assembly of the oligosaccharide chain. Because uronic acid building blocks are generally considered to be less reactive than their non-oxidized counterparts, the latter approach has found most application in carbohydrate synthesis. With the aid of selected examples of recent syntheses of biologically relevant oligosaccharides and glycoconjugates, the reactivity of different uronic acid building blocks is evaluated. From these examples it is apparent that the generally assumed low reactivity of uronic acids does not a priori rule out an efficient assembly of these target compounds. Besides influencing the reactivity of a given pyranoside, the C-5 carboxylic acid function can also have a profound effect on the stereochemical course of a glycosylation reaction, which can be exploited in the stereoselective formation of glycosidic bonds.</p

    Equatorial Anomeric Triflates from Mannuronic Acid Esters

    No full text
    Activation of mannuronic acid esters leads to a conformational mixture of alpha-anomeric triflates, in which the equatorial triflate ((1)C(4), chair) is formed preferentially. This unexpected intermediate clearly opposes the anomeric effect and is mainly stabilized by the electron-withdrawing carboxylate function at C-5. Because the anomeric center carries a significant positive charge, the (1)C(4), mannopyral chair approximates the favored (3)H(4), half-chair oxacarbenium ion conformation. The excellent B-selectivity in glycosytations of mannuronates is postulated to originate from the cooperative action of the triflate counterion and the (stereo)etectronic effects governing oxacarbenium ion stabilization in the transition state leading to the 1,2-cis product

    Influence of O6 in Mannosylations Using Benzylidene Protected Donors:Stereoelectronic or Conformational Effects?

    No full text
    The stereoselective synthesis of beta-mannosides and the underlying reaction mechanism have been thoroughly studied, and especially the benzylidene-protected mannosides have gained a lot of attention since the corresponding mannosyl triflates often give excellent selectivity. The hypothesis for the enhanced stereoselectivity has been that the benzylidene locks the molecule in a less reactive conformation with the O6 trans to the ring oxygen (O5), which would stabilize the formed alpha-triflate and subsequent give beta-selectivity. In this work, the hypothesis is challenged by using the carbon analogue (C7) of the benzylidene-protected mannosyl donor, which is investigated in terms of diastereoselectivity and reactivity and by low-temperature NMR In terms of diastereoselectivity, the C-7-analogue behaves similarly to the benzylidene-protected donor, but its low-temperature NMR reveals the formation of several reactive intermediate. One of the intermediates was found to be the beta-oxosulfonium ion. The reactivity of the donor was found to be in between that of the "torsional" disarmed and an armed donor

    Catalytic Mechanism and Mode of Action of the Periplasmic Alginate Epimerase AlgG

    Get PDF
    Background: The alginate epimerase AlgG converts mannuronate to its C5 epimer guluronate at the polymer level. Results: The structure of Pseudomonas syringae AlgG has been determined, and the protein has been functionally characterized. Conclusion: His(319) acts as the catalytic base, whereas Arg(345) neutralizes the negative charge of the carboxylate group during catalysis. Significance: This is the first structural characterization of a periplasmic alginate epimerase. Pseudomonas aeruginosa is an opportunistic pathogen that forms chronic biofilm infections in the lungs of cystic fibrosis patients. A major component of the biofilm during these infections is the exopolysaccharide alginate, which is synthesized at the inner membrane as a homopolymer of 1-4-linked -d-mannuronate. As the polymer passages through the periplasm, 22-44% of the mannuronate residues are converted to -l-guluronate by the C5-epimerase AlgG to produce a polymer of alternating -d-mannuronate and -l-guluronate blocks and stretches of polymannuronate. To understand the molecular basis of alginate epimerization, the structure of Pseudomonas syringae AlgG has been determined at 2.1- resolution, and the protein was functionally characterized. The structure reveals that AlgG is a long right-handed parallel -helix with an elaborate lid structure. Functional analysis of AlgG mutants suggests that His(319) acts as the catalytic base and that Arg(345) neutralizes the acidic group during the epimerase reaction. Water is the likely catalytic acid. Electrostatic surface potential and residue conservation analyses in conjunction with activity and substrate docking studies suggest that a conserved electropositive groove facilitates polymannuronate binding and contains at least nine substrate binding subsites. These subsites likely align the polymer in the correct register for catalysis to occur. The presence of multiple subsites, the electropositive groove, and the non-random distribution of guluronate in the alginate polymer suggest that AlgG is a processive enzyme. Moreover, comparison of AlgG and the extracellular alginate epimerase AlgE4 of Azotobacter vinelandii provides a structural rationale for the differences in their Ca2+ dependence

    Acceptor Reactivity in the Total Synthesis of Alginate Fragments Containing -L-Guluronic Acid and -D-Mannuronic Acid

    No full text
    The total synthesis of mixed-sequence alginate oligosaccharides, featuring both β-D-mannuronic acid (M) and α-L-guluronic acid (G), is reported for the first time. A set of GM, GMG, GMGM, GMGMG, GMGMGM, GMGMGMG, and GMGGMG alginates was assembled using GM building blocks, having a guluronic acid acceptor part and a mannuronic acid donor side to allow the fully stereoselective construction of the cis-glycosidic linkages. It was found that the nature of the reducing-end anomeric center, which is ten atoms away from the reacting alcohol group in the key disaccharide acceptor, had a tremendous effect on the efficiency with which the building blocks were united. This chiral center determines the overall shape of the acceptor and it is revealed that the conformational flexibility of the acceptor is an all-important factor in determining the outcome of a glycosylation reaction.Bio-organic Synthesi

    Stereoselective Synthesis of 2,3-Diamino-2,3-dideoxy-beta-D-mannopyranosyl Uronates

    No full text
    With the aim to find an efficient synthetic procedure for the construction of 2,3-diamino-2,3-dideoxy-beta-D-mannuronic acids, we evaluated three mannosyl donors: (S)-phenyl 4,6-di-O-acetyl-2,3-diazido mannopyranoside, (S)-phenyl 2,3-diazido-4,6-O-benzylidene mannopyranoside, and (S)-phenyl 2,3-diazido mannopyranosyl methyl uronate. The first two mannosylating agents are rather unselective or slightly a-selective in their condensation with three different acceptors. The mannuronic acid donor on the other hand reliably provides the desired beta-mannosidic linkage. A mechanistic rationale is put forward to account for the different behavior of the three donor types. Suitably protected 2,3-diazido mannuronic acids were employed to construct the all-cis-linked tetrasaccharide repeating unit of the capsular polysaccharide of Bacillus stearothermophilus, featuring two 2,3-diacetamido-2,3-dideoxy-beta-D-mannuronic acids
    corecore