345 research outputs found

    Discovery of Delta Scuti variables in eclipsing binary systems II.Southern TESS field search

    Full text link
    The presence of pulsating stars in eclipsing binary systems (EBs) makes these objects significant since they allow us to investigate the stellar interior structure and evolution. Different types of pulsating stars could be found in EBs such as Delta Scuti variables. Delta Scuti stars in EBs have been known for decades and the increasing number of such systems is important for understanding pulsational structure. Hence, in this study, a research was carried out on the southern TESS field to discover new Delta Scuti stars in EBs. We produced an algorithm to search for detached and semi-detached EBs considering three steps; the orbital period (Porb_{orb})'s harmonics in the Fourier spectrum, skewness of the light curves, and classification of \textsc{UPSILON} program. If two of these steps classify a system as an EB, the algorithm also identifies it as an EB. The TESS pixel files of targets were also analyzed to see whether the fluxes are contaminated by other systems. No contamination was found. We researched the existence of pulsation through EBs with a visual inspection. To confirm Delta Scuti-type oscillations, the binary variation was removed from the light curve, and residuals were analyzed. Consequently, we identified 42 Delta Scuti candidates in EBs. The Porb_{orb}, LL, and MV_{V} of systems were calculated. Their positions on the H-R diagram and the known orbital-pulsation period relationship were analyzed. We also examined our targets to find if any of them show frequency modulation with the orbital period and discovered one candidate of tidally tilted pulsators.Comment: Published in MNRA

    Emulation of X-ray Light-Field Cameras

    Get PDF
    X-ray plenoptic cameras acquire multi-view X-ray transmission images in a single exposure (light-field). Their development is challenging: designs have appeared only recently, and they are still affected by important limitations. Concurrently, the lack of available real X-ray light-field data hinders dedicated algorithmic development. Here, we present a physical emulation setup for rapidly exploring the parameter space of both existing and conceptual camera designs. This will assist and accelerate the design of X-ray plenoptic imaging solutions, and provide a tool for generating unlimited real X-ray plenoptic data. We also demonstrate that X-ray light-fields allow for reconstructing sharp spatial structures in three-dimensions (3D) from single-shot data

    Probing the Heterogeneity of Protein Kinase Activation in Cells by Super-Resolution Microscopy

    Get PDF
    Heterogeneity of mitogen-activated protein kinase (MAPK) activation in genetically identical cells, which occurs in response to epidermal growth factor receptor (EGFR) signaling, remains poorly understood. MAPK cascades integrate signals emanating from different EGFR spatial locations, including the plasma membrane and endocytic compartment. We previously hypothesized that in EGF-stimulated cells the MAPK phosphorylation (pMAPK) level and activity are largely determined by the spatial organization of the EGFR clusters within the cell. For experimental testing of this hypothesis, we used super-resolution microscopy to define EGFR clusters by receptor numbers (N) and average intra-cluster distances (d). From this data, we predicted the extent of pMAPK with 85% accuracy on a cell-to-cell basis with control data returning 54% accuracy (P50nm were most predictive for pMAPK level in cells. Electron microscopy revealed that these large clusters were primarily localized to the limiting membrane of multivesicular bodies (MVB). Many tighter packed dimers/multimers (d<50nm) were found on intraluminal vesicles within MVBs, where they were unlikely to activate MAPK because of the physical separation. Our results suggest that cell-to-cell differences in N and d contain crucial information to predict EGFR-activated cellular pMAPK levels and explain pMAPK heterogeneity in isogenic cells

    Probing the Heterogeneity of Protein Kinase Activation in Cells by Super-Resolution Microscopy

    Get PDF
    [Image: see text] Heterogeneity of mitogen-activated protein kinase (MAPK) activation in genetically identical cells, which occurs in response to epidermal growth factor receptor (EGFR) signaling, remains poorly understood. MAPK cascades integrate signals emanating from different EGFR spatial locations, including the plasma membrane and endocytic compartment. We previously hypothesized that in EGF-stimulated cells the MAPK phosphorylation (pMAPK) level and activity are largely determined by the spatial organization of the EGFR clusters within the cell. For experimental testing of this hypothesis, we used super-resolution microscopy to define EGFR clusters by receptor numbers (N) and average intracluster distances (d). From these data, we predicted the extent of pMAPK with 85% accuracy on a cell-to-cell basis with control data returning 54% accuracy (P < 0.001). For comparison, the prediction accuracy was only 61% (P = 0.382) when the diffraction-limited averaged fluorescence intensity/cluster was used. Large clusters (N ≥ 3) with d > 50 nm were most predictive for pMAPK level in cells. Electron microscopy revealed that these large clusters were primarily localized to the limiting membrane of multivesicular bodies (MVB). Many tighter packed dimers/multimers (d < 50 nm) were found on intraluminal vesicles within MVBs, where they were unlikely to activate MAPK because of the physical separation. Our results suggest that cell-to-cell differences in N and d contain crucial information to predict EGFR-activated cellular pMAPK levels and explain pMAPK heterogeneity in isogenic cells

    Malarial Hemozoin Is a Nalp3 Inflammasome Activating Danger Signal

    Get PDF
    BACKGROUND: Characteristic symptoms of malaria include recurrent fever attacks and neurodegeneration, signs that are also found in patients with a hyperactive Nalp3 inflammasome. Plasmodium species produce a crystal called hemozoin that is generated by detoxification of heme after hemoglobin degradation in infected red blood cells. Thus, we hypothesized that hemozoin could activate the Nalp3 inflammasome, due to its particulate nature reminiscent of other inflammasome-activating agents. METHODOLOGY/PRINCIPAL FINDINGS: We found that hemozoin acts as a proinflammatory danger signal that activates the Nalp3 inflammasome, causing the release of IL-1beta. Similar to other Nalp3-activating particles, hemozoin activity is blocked by inhibiting phagocytosis, K(+) efflux and NADPH oxidase. In vivo, intraperitoneal injection of hemozoin results in acute peritonitis, which is impaired in Nalp3-, caspase-1- and IL-1R-deficient mice. Likewise, the pathogenesis of cerebral malaria is dampened in Nalp3-deficient mice infected with Plasmodium berghei sporozoites, while parasitemia remains unchanged. SIGNIFICANCE/CONCLUSIONS: The potent pro-inflammatory effect of hemozoin through inflammasome activation may possibly be implicated in plasmodium-associated pathologies such as cerebral malaria

    Malarial Hemozoin Is a Nalp3 Inflammasome Activating Danger Signal

    Get PDF
    BACKGROUND: Characteristic symptoms of malaria include recurrent fever attacks and neurodegeneration, signs that are also found in patients with a hyperactive Nalp3 inflammasome. Plasmodium species produce a crystal called hemozoin that is generated by detoxification of heme after hemoglobin degradation in infected red blood cells. Thus, we hypothesized that hemozoin could activate the Nalp3 inflammasome, due to its particulate nature reminiscent of other inflammasome-activating agents. METHODOLOGY/PRINCIPAL FINDINGS: We found that hemozoin acts as a proinflammatory danger signal that activates the Nalp3 inflammasome, causing the release of IL-1beta. Similar to other Nalp3-activating particles, hemozoin activity is blocked by inhibiting phagocytosis, K(+) efflux and NADPH oxidase. In vivo, intraperitoneal injection of hemozoin results in acute peritonitis, which is impaired in Nalp3-, caspase-1- and IL-1R-deficient mice. Likewise, the pathogenesis of cerebral malaria is dampened in Nalp3-deficient mice infected with Plasmodium berghei sporozoites, while parasitemia remains unchanged. SIGNIFICANCE/CONCLUSIONS: The potent pro-inflammatory effect of hemozoin through inflammasome activation may possibly be implicated in plasmodium-associated pathologies such as cerebral malaria

    Chemical Mapping of Ceramide Distribution in Sphingomyelin-Rich Domains in Monolayers

    Get PDF
    The incorporation of ceramide in phase-separated monolayers of ternary lipid mixtures has been studied by a combination of atomic force microscopy (AFM), fluorescence, and time-of-flight secondary ion mass spectrometry (ToF-SIMS). Replacement of a fraction of the sphingomyelin by ceramide in DOPC/SM/cholesterol monolayers leads to changes in the SM-cholesterol-rich liquid-ordered domains. AFM shows the formation of heterogeneous domains with small raised islands that are assigned to a ceramide-rich gel phase. ToF-SIMS provides conclusive evidence for the localization of SM and ceramide in ordered domains and shows that ceramide is heterogeneously distributed in small islands throughout the domains. The results indicate the utility of combining AFM and ToF-SIMS for understanding compositions of phase-separated membranes
    corecore