60 research outputs found
Neurotransmitters Drive Combinatorial Multistate Postsynaptic Density Networks
The mammalian postsynaptic density (PSD) comprises a complex collection of ~1100 proteins. Despite extensive knowledge of individual proteins, the overall organization of the PSD is poorly understood. Here, we define maps of molecular circuitry within the PSD based on phosphorylation of postsynaptic proteins. Activation of a single neurotransmitter receptor, the N-methyl-D-aspartate receptor (NMDAR), changed the phosphorylation status of 127 proteins. Stimulation of ionotropic and metabotropic glutamate receptors and dopamine receptors activated overlapping networks with distinct combinatorial phosphorylation signatures. Using peptide array technology, we identified specific phosphorylation motifs and switching mechanisms responsible for the integration of neurotransmitter receptor pathways and their coordination of multiple substrates in these networks. These combinatorial networks confer high information-processing capacity and functional diversity on synapses, and their elucidation may provide new insights into disease mechanisms and new opportunities for drug discover
Common Genetic Denominators for Ca++-Based Skeleton in Metazoa: Role of Osteoclast-Stimulating Factor and of Carbonic Anhydrase in a Calcareous Sponge
Calcium-based matrices serve predominantly as inorganic, hard skeletal systems in Metazoa from calcareous sponges [phylum Porifera; class Calcarea] to proto- and deuterostomian multicellular animals. The calcareous sponges form their skeletal elements, the spicules, from amorphous calcium carbonate (ACC). Treatment of spicules from Sycon raphanus with sodium hypochlorite (NaOCl) results in the disintegration of the ACC in those skeletal elements. Until now a distinct protein/enzyme involved in ACC metabolism could not been identified in those animals. We applied the technique of phage display combinatorial libraries to identify oligopeptides that bind to NaOCl-treated spicules: those oligopeptides allowed us to detect proteins that bind to those spicules. Two molecules have been identified, the (putative) enzyme carbonic anhydrase and the (putative) osteoclast-stimulating factor (OSTF), that are involved in the catabolism of ACC. The complete cDNAs were isolated and the recombinant proteins were prepared to raise antibodies. In turn, immunofluorescence staining of tissue slices and qPCR analyses have been performed. The data show that sponges, cultivated under standard condition (10 mM CaCl2) show low levels of transcripts/proteins for carbonic anhydrase or OSTF, compared to those animals that had been cultivated under Ca2+-depletion condition (1 mM CaCl2). Our data identify with the carbonic anhydrase and the OSTF the first two molecules which remain conserved in cells, potentially involved in Ca-based skeletal dissolution, from sponges (sclerocytes) to human (osteoclast)
Molecular Constraints on Synaptic Tagging and Maintenance of Long-Term Potentiation: A Predictive Model
Protein synthesis-dependent, late long-term potentiation (LTP) and depression
(LTD) at glutamatergic hippocampal synapses are well characterized examples of
long-term synaptic plasticity. Persistent increased activity of the enzyme
protein kinase M (PKM) is thought essential for maintaining LTP. Additional
spatial and temporal features that govern LTP and LTD induction are embodied in
the synaptic tagging and capture (STC) and cross capture hypotheses. Only
synapses that have been "tagged" by an stimulus sufficient for LTP and learning
can "capture" PKM. A model was developed to simulate the dynamics of key
molecules required for LTP and LTD. The model concisely represents
relationships between tagging, capture, LTD, and LTP maintenance. The model
successfully simulated LTP maintained by persistent synaptic PKM, STC, LTD, and
cross capture, and makes testable predictions concerning the dynamics of PKM.
The maintenance of LTP, and consequently of at least some forms of long-term
memory, is predicted to require continual positive feedback in which PKM
enhances its own synthesis only at potentiated synapses. This feedback
underlies bistability in the activity of PKM. Second, cross capture requires
the induction of LTD to induce dendritic PKM synthesis, although this may
require tagging of a nearby synapse for LTP. The model also simulates the
effects of PKM inhibition, and makes additional predictions for the dynamics of
CaM kinases. Experiments testing the above predictions would significantly
advance the understanding of memory maintenance.Comment: v3. Minor text edits to reflect published versio
RhoGTPase Regulators Orchestrate Distinct Stages of Synaptic Development
Small RhoGTPases regulate changes in post-synaptic spine morphology and density that support learning and memory. They are also major targets of synaptic disorders, including Autism. Here we sought to determine whether upstream RhoGTPase regulators, including GEFs, GAPs, and GDIs, sculpt specific stages of synaptic development. The majority of examined molecules uniquely regulate either early spine precursor formation or later matura- tion. Specifically, an activator of actin polymerization, the Rac1 GEF β-PIX, drives spine pre- cursor formation, whereas both FRABIN, a Cdc42 GEF, and OLIGOPHRENIN-1, a RhoA GAP, regulate spine precursor elongation. However, in later development, a novel Rac1 GAP, ARHGAP23, and RhoGDIs inactivate actomyosin dynamics to stabilize mature synap- ses. Our observations demonstrate that specific combinations of RhoGTPase regulatory pro- teins temporally balance RhoGTPase activity during post-synaptic spine development
The NEWMEDS rodent touchscreen test battery for cognition relevant to schizophrenia.
RATIONALE: The NEWMEDS initiative (Novel Methods leading to New Medications in Depression and Schizophrenia, http://www.newmeds-europe.com ) is a large industrial-academic collaborative project aimed at developing new methods for drug discovery for schizophrenia. As part of this project, Work package 2 (WP02) has developed and validated a comprehensive battery of novel touchscreen tasks for rats and mice for assessing cognitive domains relevant to schizophrenia. OBJECTIVES: This article provides a review of the touchscreen battery of tasks for rats and mice for assessing cognitive domains relevant to schizophrenia and highlights validation data presented in several primary articles in this issue and elsewhere. METHODS: The battery consists of the five-choice serial reaction time task and a novel rodent continuous performance task for measuring attention, a three-stimulus visual reversal and the serial visual reversal task for measuring cognitive flexibility, novel non-matching to sample-based tasks for measuring spatial working memory and paired-associates learning for measuring long-term memory. RESULTS: The rodent (i.e. both rats and mice) touchscreen operant chamber and battery has high translational value across species due to its emphasis on construct as well as face validity. In addition, it offers cognitive profiling of models of diseases with cognitive symptoms (not limited to schizophrenia) through a battery approach, whereby multiple cognitive constructs can be measured using the same apparatus, enabling comparisons of performance across tasks. CONCLUSION: This battery of tests constitutes an extensive tool package for both model characterisation and pre-clinical drug discovery.This work was supported by the Innovative Medicine Initiative Joint Undertaking under grant agreement no. 115008 of which resources are composed of EFPIA in-kind contribution and financial contribution from the European Union’s Seventh Framework Programme (FP7/2007-2013). The authors thank Charlotte Oomen for valuable comments on the manuscript.This is the author accepted manuscript. The final version is available from Springer via http://dx.doi.org/10.1007/s00213-015-4007-
Traditional Excluding Forces: A Review of the Quantitative Literature on the Economic Situation of Indigenous Peoples, Afro-Descendants, and People Living with Disability
Unequal income distribution in Latin America and the Caribbean is linked to unequal distributions of (human and physical) assets and differential access to markets and services. These circumstances, and the accompanying social tensions, need to be understood in terms of traditional fragmenting forces; the sectors of the population who experience unfavorable outcomes are also recognized by characteristics such as ethnicity, race, gender and physical disability. In addition to reviewing the general literature on social exclusion, this paper surveys several more specific topics: i) relative deprivation (in land and housing, physical infrastructure, health and income); ii) labor market issues, including access to labor markets in general, as well as informality, segregation and discrimination; iii) the transaction points of political representation, social protection and violence; and iv) areas where analysis remains weak and avenues for further research in the region
- …