1,809 research outputs found
Acoustic properties of a supersonic fan
Acoustic properties of supersonic fan with short blade spa
Effect of duct shape, Mach number, and lining construction on measured suppressor attenuation and comparison with theory
Noise attenuation was measured for several types of cylindrical suppressors that use a duct lining composed of honeycomb cells covered with a perforated plate. The experimental technique used gave attenuation data that were repeatable and free of noise floors and other sources of error. The suppressor length, the effective acoustic diameter, suppressor shape and flow velocity were varied. The agreement among the attenuation data and two widely used analytical models was generally satisfactory. Changes were also made in the construction of the acoustic lining to measure their effect on attenuation. One of these produced a very broadband muffler
Comparison of NASA and contractor results from aeroacoustic tests of QCSEE OTW engine
The aerodynamics and acoustics of the over-the-wing (OTW) Quiet, Clean, Short Haul Experimental Engine (QCSEE) were tested. A boilerplate (nonflight weight), high-throat Mach number, acoustically treated inlet and a D-shaped OTW exhaust nozzle with variable position side doors were used. Some acoustic directivity results for the type "D" nozzle and acoustic effects of variations in the nozzle side door positions are included. It was found that the results are in agreement with those previously obtained
Experimental Verification of a Progressive Damage Model for IM7/5260 Laminates Subjected to Tension-Tension Fatigue
The durability and damage tolerance of laminated composites are critical design considerations for airframe composite structures. Therefore, the ability to model damage initiation and growth and predict the life of laminated composites is necessary to achieve structurally efficient and economical designs. The purpose of this research is to experimentally verify the application of a continuum damage model to predict progressive damage development in a toughened material system. Damage due to monotonic and tension-tension fatigue was documented for IM7/5260 graphite/bismaleimide laminates. Crack density and delamination surface area were used to calculate matrix cracking and delamination internal state variables to predict stiffness loss in unnotched laminates. A damage dependent finite element code predicted the stiffness loss for notched laminates with good agreement to experimental data. It was concluded that the continuum damage model can adequately predict matrix damage progression in notched and unnotched laminates as a function of loading history and laminate stacking sequence
Detoxification of Pesticide Residues in Soil Using Phytoremediation
During the past few years, we have conducted a series of experiments to investigate the potential of using plants as tools for the remediation of pesticide-contaminated soil. We have demonstrated that a blend of prairie grasses increases dissipation rates of several pesticides including metolachlor, trifluralin, and pendimethalin. However, in other studies, mulberry trees were not shown to influence pesticide dissipation. Additional studies have demonstrated that metolachlor movement in the soil column may be reduced by the presence of prairie grasses, bioavailability of dinitroanaline herbicides may be reduced during phytoremediation, and soil and leachate from remediated soil may have less toxicity than expected. Current studies within our laboratory are being conducted to determine the role of prairie grass blends in the phytoremediation procedure as compared to individual species and the role of plant uptake of pesticides in the phytoremediation process
Persistence, Mobility, and Bioavailability of Pendimethalin and Trifluralin in Soil
Pendimethalin and trifluralin are current-use pesticides that have been previously reported as persistent, bioaccumulative, and toxic. In the studies presented here, dissipation of aged and fresh residues of pendimethalin and trifluralin were evaluated in soil, as well as the bioavailability of residues to earthworms and the movement of pendimethalin in a soil column. In a separate study, pond water receiving runoff from a golf course was measured for the presence of pendimethalin. Dissipation measurements of pendimethalin and trifluralin in soil indicated very slow dissipation with 40-60% of the compounds extractable at 1026 days after the first measurement. In a second study, dissipation of pendimethalin was more rapid, however more than 30% was present after 310 days of soil treatment. Biovailability, as measured by earthworm biological accumulation factors, was reduced over time. Mobility of pendimethalin was very limited. Almost no downward movement was measured in the column study, and no detectable levels were found in runoff from turf grass
- …