37 research outputs found

    Cortical tau is associated with microstructural imaging biomarkers of neurite density and dendritic complexity in Alzheimer's disease

    Get PDF
    INTRODUCTION: In Alzheimer's disease (AD), hyperphosphorylated tau is closely associated with focal neurodegeneration, but the mechanism remains uncertain. METHODS: We quantified cortical microstructure using neurite orientation dispersion and density imaging in 14 individuals with young onset AD. Diffusion tensor imaging measured mean diffusivity (MD). Amyloid beta and tau positron emission tomography were acquired and associations with microstructural measures were assessed. RESULTS: When regional volume was adjusted for, in the medial temporal lobe there was a significant negative association between neurite density and tau (partial R2  = 0.56, p = 0.008) and between orientation dispersion and tau (partial R2  = 0.66, p = 0.002), but not between MD and tau. In a wider cortical composite, there was an association between orientation dispersion and tau (partial R2  = 0.43, p = 0.030), but not between other measures and tau. DISCUSSION: Our findings are consistent with tau causing first dendritic pruning (reducing dispersion/complexity) followed by neuronal loss. Advanced magnetic resonance imaging (MRI) microstructural measures have the potential to provide information relating to underlying tau deposition

    Evaluation of novel data-driven metrics of amyloid β deposition for longitudinal PET studies

    Get PDF
    PURPOSE: Positron emission tomography (PET) provides in vivo quantification of amyloid-β (Aβ) pathology. Established methods for assessing Aβ burden can be affected by physiological and technical factors. Novel, data-driven metrics have been developed to account for these sources of variability. We aimed to evaluate the performance of four data-driven amyloid PET metrics against conventional techniques, using a common set of criteria. METHODS: Three cohorts were used for evaluation: Insight 46 (N=464, [18F]florbetapir), AIBL (N=277, [18F]flutemetamol), and an independent test-retest data (N=10, [18F]flutemetamol). Established metrics of amyloid tracer uptake included the Centiloid (CL) and where dynamic data was available, the non-displaceable binding potential (BPND). The four data driven metrics computed were the amyloid load (Aβ load), the Aβ PET pathology accumulation index (Aβ index), the Centiloid derived from non-negative matrix factorisation (CLNMF), and the amyloid pattern similarity score (AMPSS). These metrics were evaluated using reliability and repeatability in test-retest data, associations with BPND and CL, and sample size estimates to detect a 25% slowing in Aβ accumulation. RESULTS: All metrics showed good reliability. Aβ load, Aβ index and CLNMF were strong associated with the BPND. The associations with CL suggests that cross-sectional measures of CLNMF, Aβ index and Aβ load are robust across studies. Sample size estimates for secondary prevention trial scenarios were the lowest for CLNMF and Aβ load compared to the CL. CONCLUSION: Among the novel data-driven metrics evaluated, the Aβ load, the Aβ index and the CLNMF can provide comparable performance to more established quantification methods of Aβ PET tracer uptake. The CLNMF and Aβ load could offer a more precise alternative to CL, although further studies in larger cohorts should be conducted

    Straight and Divergent Pathways to Cognitive State: Seven Decades of Follow-Up in the British 1946 Birth Cohort

    Get PDF
    BACKGROUND: Using the British 1946 birth cohort we previously estimated life course paths to the Addenbrooke's Cognitive Examination (ACE-III). OBJECTIVE: We now compared those whose ACE-III scores were expected, worse and better than predicted from the path model on a range of independent variables including clinical ratings of cognitive impairment and neuroimaging measures. METHODS: Predicted ACE-III scores were categorized into three groups: those with Expected (between -1.5 and 1.5 standard deviation; SD); Worse (1.5 SD) scores. Differences in the independent variables were then tested between these three groups. RESULTS: Compared with the Expected group, those in the Worse group showed independent evidence of progressive cognitive impairment: faster memory decline, more self-reported memory difficulties, more functional difficulties, greater likelihood of being independently rated by experienced specialist clinicians as having a progressive cognitive impairment, and a cortical thinning pattern suggestive of preclinical Alzheimer's disease. Those in the Better group showed slower verbal memory decline and absence of independently rated progressive cognitive impairment compared to the Expected group, but no differences in any of the other independent variables including the neuroimaging variables. CONCLUSION: The residual approach shows that life course features can map directly to clinical diagnoses. One future challenge is to translate this into a readily usable algorithm to identify high-risk individuals in preclinical state, when preventive strategies and therapeutic interventions may be most effective

    Investigating the relationship between IGF-I, IGF-II, and IGFBP-3 concentrations and later-life cognition and brain volume

    Get PDF
    Background The insulin/insulin-like signaling (IIS) pathways, including insulin-like growth factors (IGFs), vary with age. However, their association with late-life cognition and neuroimaging parameters is not well characterized. Methods Using data from the British 1946 birth cohort, we investigated associations of IGF-I, IGF-II and IGF binding protein 3 (IGFBP-3; measured at 53 and 60-64 years of age) with cognitive performance [word-learning test (WLT) and visual letter search (VLS) at 60-64 years and 69 years of age] and cognitive state [Addenbrooke’s Cognitive Exam III (ACE-III) at 69-71 years of age], and in a proportion, quantified neuroimaging measures [whole brain volume (WBV), white matter hyperintensity volume (WMHV), hippocampal volume (HV)]. Regression models included adjustments for demographic, lifestyle, and health factors. Results Higher IGF-I and IGF-II at 53 years of age was associated with higher ACE-III scores [ß 0.07 95% confidence interval (CI) (0.02, 0.12); scoreACE-III 89.48 (88.86, 90.1), respectively). IGF-II at 53 years of age was additionally associated with higher WLT scores [scoreWLT 20 (19.35, 20.65)]. IGFBP-3 at 60 to 64 years of age was associated with favorable VLS score at 60 to 64 and 69 years of age [ß 0.07 (0.01, 0.12); ß 0.07 (0.02, 0.12), respectively], higher memory and cognitive state at 69 years of age [ß 0.07 (0.01, 0.12); ß 0.07 (0.01, 0.13), respectively], and reduced WMHV [ß −0.1 (−0.21, −0.00)]. IGF-I/IGFBP-3 at 60 to 64 years of was associated with lower VLS scores at 69 years of age [ß −0.08 (−0.15, −0.02)]. Conclusions Increased measure in IIS parameters (IGF-I, IGF-II, and IGFBP-3) relate to better cognitive state in later life. There were apparent associations with specific cognitive domains (IGF-II relating to memory; IGFBP-3 relating to memory, processing speed, and WMHV; and IGF-I/IGFBP-3 molar ratio related to slower processing speed). IGFs and IGFBP-3 are associated with favorable cognitive function outcomes

    Olfactory testing does not predict β-amyloid, MRI measures of neurodegeneration or vascular pathology in the British 1946 birth cohort.

    Get PDF
    OBJECTIVE: To explore the value of olfactory identification deficits as a predictor of cerebral β-amyloid status and other markers of brain health in cognitively normal adults aged ~ 70 years. METHODS: Cross-sectional observational cohort study. 389 largely healthy and cognitively normal older adults were recruited from the MRC National Survey of Health and Development (1946 British Birth cohort) and investigated for olfactory identification deficits, as measured by the University of Pennsylvania Smell Identification Test. Outcome measures were imaging markers of brain health derived from 3 T MRI scanning (cortical thickness, entorhinal cortex thickness, white matter hyperintensity volumes); 18F florbetapir amyloid-PET scanning; and cognitive testing results. Participants were assessed at a single centre between March 2015 and January 2018. RESULTS: Mean (± SD) age was 70.6 (± 0.7) years, 50.8% were female. 64.5% had hyposmia and 2.6% anosmia. Olfaction showed no association with β-amyloid status, hippocampal volume, entorhinal cortex thickness, AD signature cortical thickness, white matter hyperintensity volume, or cognition. CONCLUSION AND RELEVANCE: In the early 70s, olfactory function is not a reliable predictor of a range of imaging and cognitive measures of preclinical AD. Olfactory identification deficits are not likely to be a useful means of identifying asymptomatic amyloidosis. Further studies are required to assess if change in olfaction may be a proximity marker for the development of cognitive impairment

    Investigating associations between blood metabolites, later life brain imaging measures, and genetic risk for Alzheimer’s disease

    Get PDF
    BACKGROUND: Identifying blood-based signatures of brain health and preclinical pathology may offer insights into early disease mechanisms and highlight avenues for intervention. Here, we systematically profiled associations between blood metabolites and whole-brain volume, hippocampal volume, and amyloid-β status among participants of Insight 46-the neuroscience sub-study of the National Survey of Health and Development (NSHD). We additionally explored whether key metabolites were associated with polygenic risk for Alzheimer's disease (AD). METHODS: Following quality control, levels of 1019 metabolites-detected with liquid chromatography-mass spectrometry-were available for 1740 participants at age 60-64. Metabolite data were subsequently clustered into modules of co-expressed metabolites using weighted coexpression network analysis. Accompanying MRI and amyloid-PET imaging data were present for 437 participants (age 69-71). Regression analyses tested relationships between metabolite measures-modules and hub metabolites-and imaging outcomes. Hub metabolites were defined as metabolites that were highly connected within significant (pFDR < 0.05) modules or were identified as a hub in a previous analysis on cognitive function in the same cohort. Regression models included adjustments for age, sex, APOE genotype, lipid medication use, childhood cognitive ability, and social factors. Finally, associations were tested between AD polygenic risk scores (PRS), including and excluding the APOE region, and metabolites and modules that significantly associated (pFDR < 0.05) with an imaging outcome (N = 1638). RESULTS: In the fully adjusted model, three lipid modules were associated with a brain volume measure (pFDR < 0.05): one enriched in sphingolipids (hippocampal volume: ß = 0.14, 95% CI = [0.055,0.23]), one in several fatty acid pathways (whole-brain volume: ß =  - 0.072, 95%CI = [- 0.12, - 0.026]), and another in diacylglycerols and phosphatidylethanolamines (whole-brain volume: ß =  - 0.066, 95% CI = [- 0.11, - 0.020]). Twenty-two hub metabolites were associated (pFDR < 0.05) with an imaging outcome (whole-brain volume: 22; hippocampal volume: 4). Some nominal associations were reported for amyloid-β, and with an AD PRS in our genetic analysis, but none survived multiple testing correction. CONCLUSIONS: Our findings highlight key metabolites, with functions in membrane integrity and cell signalling, that associated with structural brain measures in later life. Future research should focus on replicating this work and interrogating causality

    Operationalizing the centiloid scale for [18F]florbetapir PET studies on PET/MRI

    Get PDF
    INTRODUCTION: The Centiloid scale aims to harmonize amyloid beta (Aβ) positron emission tomography (PET) measures across different analysis methods. As Centiloids were created using PET/computerized tomography (CT) data and are influenced by scanner differences, we investigated the Centiloid transformation with data from Insight 46 acquired with PET/magnetic resonanceimaging (MRI). METHODS: We transformed standardized uptake value ratios (SUVRs) from 432 florbetapir PET/MRI scans processed using whole cerebellum (WC) and white matter (WM) references, with and without partial volume correction. Gaussian-mixture-modelling-derived cutpoints for Aβ PET positivity were converted. RESULTS: The Centiloid cutpoint was 14.2 for WC SUVRs. The relationship between WM and WC uptake differed between the calibration and testing datasets, producing implausibly low WM-based Centiloids. Linear adjustment produced a WM-based cutpoint of 18.1. DISCUSSION: Transformation of PET/MRI florbetapir data to Centiloids is valid. However, further understanding of the effects of acquisition or biological factors on the transformation using a WM reference is needed

    Associations of β-Amyloid and Vascular Burden With Rates of Neurodegeneration in Cognitively Normal Members of the 1946 British Birth Cohort

    Get PDF
    OBJECTIVE: To quantify the independent and interactive associations of amyloid-β (Aβ) and white matter hyperintensity volume (WMHV) - a marker of presumed cerebrovascular disease (CVD) - with rates of neurodegeneration, and to examine the contributions of APOE ε4 and vascular risk measured at different stages of adulthood in cognitively normal members of the 1946 British birth cohort. METHODS: Participants underwent brain MRI and florbetapir-Aβ positron emission tomography as part of Insight 46, an observational population-based study. Changes in whole brain, ventricular and hippocampal volume were directly measured from baseline and repeat volumetric T1 MRI using the Boundary Shift Integral. Linear regression was used to test associations with: baseline Aβ deposition; baseline WMHV; APOE ε4; and office-based Framingham heart study-cardiovascular risk scores (FHS-CVS) and systolic blood pressure (BP) at ages 36, 53 and 69 years. RESULTS: 346 cognitively normal participants (mean [SD] age at baseline scan 70.5 [0.6] years; 48% female) had high-quality T1 MRI data from both time-points (mean [SD] scan interval 2.4 [0.2] years). Being Aβ positive at baseline was associated with 0.87 ml/year faster whole brain atrophy (95% CI 0.03, 1.72), 0.39 ml/year greater ventricular expansion (95% CI 0.16, 0.64) and 0.016 ml/year faster hippocampal atrophy (95% CI 0.004, 0.027), while each 10 ml additional WMHV at baseline was associated with 1.07 ml/year faster whole brain atrophy (95% CI 0.47, 1.67), 0.31 ml/year greater ventricular expansion (95% CI 0.13, 0.60) and 0.014 ml/year faster hippocampal atrophy (95% CI 0.006, 0.022). These contributions were independent and there was no evidence that Aβ and WMHV interacted in their effects. There were no independent associations of APOE ε4 with rates of neurodegeneration after adjusting for Aβ status and WMHV, and no clear relationships between FHS-CVS or systolic BP and rates of neurodegeneration when assessed across the whole sample, nor any evidence that they acted synergistically with Aβ. CONCLUSIONS: Aβ and presumed CVD have distinct and additive effects on rates of neurodegeneration in cognitively normal elderly. These findings have implications for the use of MRI measures as biomarkers of neurodegeneration and emphasize the importance of risk management and early intervention targeting both pathways

    Neuroimaging, clinical and life course correlates of normal-appearing white matter integrity in 70-year-olds

    Get PDF
    We investigate associations between normal-appearing white matter (NAWM) microstructural integrity in cognitively normal ∼70-year-olds and concurrently measured brain health and cognition, demographics, genetics and life course cardiovascular health. Participants born in the same week in March 1946 (British 1946 Birth cohort) underwent PET-MRI around age 70. Mean standardized NAWM integrity metrics (fractional anisotropy (FA), mean diffusivity (MD), neurite density index (NDI) and orientation dispersion index (ODI)) were derived from diffusion MRI. Linear regression was used to test associations between NAWM metrics and (1) concurrent measures, including whole brain volume, white matter hyperintensity volume (WMHV), PET amyloid and cognition; (2) the influence of demographic and genetic predictors, including sex, childhood cognition, education, socioeconomic position, and genetic risk for Alzheimer’s Disease (APOE-ε4); (3) systolic and diastolic blood pressure and cardiovascular health (FHS-CVS) across adulthood. Sex interactions were tested. Statistical significance included false discovery rate correction (5%). 362 participants met inclusion criteria (mean age 70 years, 49% female). Higher WMHV was associated with lower FA (b=-0.09 [95%CI:-0.11, -0.06] p&amp;lt;0.01), NDI (b=-0.17 [-0.22, -0.12] p&amp;lt;0.01), and higher MD (b=0.14 [-0.10, -0.17] p&amp;lt;0.01); amyloid (in men) was associated with lower FA (b=-0.04 [-0.08, -0.01] p=0.03) and higher MD (b=0.06 [0.01,0.11] p=0.02). FHS-CVS in later-life (age 69) was associated with NAWM [lower FA (b=-0.06 [-0.09, -0.02] p&amp;lt;0.01), NDI (b=-0.10 [-0.17, -0.03] p&amp;lt;0.01), and higher MD (b=0.09 [0.04,0.14] p&amp;lt;0.01). Significant sex interactions (p&amp;lt;0.05) emerged for midlife cardiovascular health (age 53) and NAWM at 70: marginal effect plots demonstrated, in women only, NAWM was associated with higher midlife FHS-CVS (lower FA and NDI), midlife systolic (lower FA, NDI, and higher MD), and diastolic (lower FA and NDI) blood pressure, and greater blood pressure change between 43 and 53 years (lower FA and NDI), independently of WMHV. In summary, poorer NAWM microstructural integrity in ∼70-year-olds was associated with measures of cerebral small vessel disease, amyloid (in males) and later-life cardiovascular health, demonstrating how NAWM can provide additional information to overt white matter disease. Our findings further show that greater midlife cardiovascular risk and higher blood pressure were associated with poorer NAWM microstructural integrity in females only, suggesting that women’s brains may be more susceptible to the effects of midlife blood pressure and cardiovascular health
    corecore