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Abstract 

Background  Identifying blood-based signatures of brain health and preclinical pathology may offer insights into 
early disease mechanisms and highlight avenues for intervention. Here, we systematically profiled associations 
between blood metabolites and whole-brain volume, hippocampal volume, and amyloid-β status among partici‑
pants of Insight 46—the neuroscience sub-study of the National Survey of Health and Development (NSHD). We 
additionally explored whether key metabolites were associated with polygenic risk for Alzheimer’s disease (AD).

Methods  Following quality control, levels of 1019 metabolites—detected with liquid chromatography-mass 
spectrometry—were available for 1740 participants at age 60–64. Metabolite data were subsequently clustered 
into modules of co-expressed metabolites using weighted coexpression network analysis. Accompanying MRI and 
amyloid-PET imaging data were present for 437 participants (age 69–71). Regression analyses tested relationships 
between metabolite measures—modules and hub metabolites—and imaging outcomes. Hub metabolites were 
defined as metabolites that were highly connected within significant (pFDR < 0.05) modules or were identified as a hub 
in a previous analysis on cognitive function in the same cohort. Regression models included adjustments for age, sex, 
APOE genotype, lipid medication use, childhood cognitive ability, and social factors. Finally, associations were tested 
between AD polygenic risk scores (PRS), including and excluding the APOE region, and metabolites and modules that 
significantly associated (pFDR < 0.05) with an imaging outcome (N = 1638).

Results  In the fully adjusted model, three lipid modules were associated with a brain volume measure (pFDR < 0.05): 
one enriched in sphingolipids (hippocampal volume: ß = 0.14, 95% CI = [0.055,0.23]), one in several fatty acid 
pathways (whole-brain volume: ß =  − 0.072, 95%CI = [− 0.12, − 0.026]), and another in diacylglycerols and 
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phosphatidylethanolamines (whole-brain volume: ß =  − 0.066, 95% CI = [− 0.11, − 0.020]). Twenty-two hub metabo‑
lites were associated (pFDR < 0.05) with an imaging outcome (whole-brain volume: 22; hippocampal volume: 4). Some 
nominal associations were reported for amyloid-β, and with an AD PRS in our genetic analysis, but none survived 
multiple testing correction.

Conclusions  Our findings highlight key metabolites, with functions in membrane integrity and cell signalling, that 
associated with structural brain measures in later life. Future research should focus on replicating this work and inter‑
rogating causality.

Keywords  Metabolites, Dementia, Brain imaging, Ageing, Polygenic scores, Birth cohort, Weighted-gene 
coexpression network analysis, Alzheimer’s disease

Background
Brain changes accompanying ageing are varied and can 
include pathologies that lead to cognitive impairment, the 
commonest of which is Alzheimer’s disease (AD). Identify-
ing non-invasive and scalable markers of brain health and 
pathology in later life, including but not limited to those 
associated with AD, would be valuable for research and 
therapeutic trials. This has led to large efforts in detect-
ing blood-based markers, with candidates such as neuro-
filament light and phosphorylated-tau showing particular 
promise [1]. Blood metabolites—the products of chemi-
cal reactions occurring in the body—may also present as 
potential candidates for this goal. Due to their proximity to 
core biological processes, they are uniquely placed to cap-
ture physiological changes and may allow insights into the 
processes associated with emergence of disease [2]. Addi-
tionally, since they are potentially modifiable [3, 4], they 
could represent possible targets for intervention.

Existing research has identified associations between 
several metabolite classes and imaging markers related 
to neurodegeneration, including particular lipids and 
amino acids [5–9]. However, these studies have been 
directed towards clinical cohorts, where pathology is 
already advanced. Additionally, little is known about the 
involvement of groups of interrelated metabolites; using 
systems-level approaches could offer an improved under-
standing of these complex relationships and facilitate 
the identification of candidate markers. We previously 
employed a systems-level approach to explore the meta-
bolic correlates of late midlife cognitive function in the 
Medical Research Council National Survey of Health and 
Development (NSHD; the British 1946 birth cohort) [10]. 
We identified groups of highly coexpressed metabolites 
that associated with cognitive outcomes and key metab-
olites within these to explore further, including acylcar-
nitines, modified nucleotides and amino acids, vitamins, 
and sphingolipids, although many associations with late 
midlife cognitive outcomes were explained by social fac-
tors and childhood cognitive ability [10].

Here, we aimed to investigate the early metabolic cor-
relates of later life brain imaging measures relevant to AD 

and neurodegeneration—Aβ pathology, whole-brain vol-
ume, and hippocampal volume—using metabolite data col-
lected at age 60–64 and imaging data measured 5–11 years 
later. To provide a deeper understanding on the nature of 
potential relationships and how they may contribute to AD 
risk, we explored whether any key metabolites were addi-
tionally associated with polygenic risk for AD.

Methods
Participants
The NSHD is a broadly representative birth cohort study, 
originally following 5362 individuals since their birth in 
mainland Britain during one week in March 1946 [11]. 
At age 69–71, 502 participants enrolled in Insight 46, the 
neuroscience sub-study. At a University College London 
clinic, they underwent comprehensive clinical and cog-
nitive tests, MRI, and 18F-florbetapir positron emission 
tomography (PET) imaging [12, 13]. Compared to the full 
NSHD cohort, participants of Insight 46 were of slightly 
higher cognitive ability, more socially advantaged, and of 
better overall health [13]. Further details on participant 
eligibility and recruitment can be found elsewhere [12].

Insight 46 participants with full metabolite data, and 
who completed the scanning procedure and were demen-
tia-free, were included for module and hub metabolite 
analyses (N = 437; 47.6% female, 18.9% Aβ-positive). For 
PRS analyses, NSHD participants with metabolomics and 
genetic data were included (N = 1638; 50.4% female).

Ethical approval was obtained from the National 
Research Ethics Service Committee London (14/
LO/1173). All participants provided written informed 
consent.

Materials
Metabolite quality control
At age 60–64, blood samples were collected in ethylene-
diaminetetraacetic acid (EDTA) tubes by trained research 
nurses (96% fasted). Samples were stored at – 80 °C.

Using Ultrahigh Performance Liquid Chromatography-
Tandem Mass Spectrometry (UPLC-MS/MS), levels of 
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1401 metabolites were detected and measured by Metab-
olon Inc. (Durham, NC, USA) among 1814 NSHD par-
ticipants. All samples were received by Metabolon at the 
same time point. Metabolites were assigned to nine fami-
lies (lipids, amino acids, xenobiotics, peptides, nucleo-
tides, cofactors and vitamins, carbohydrates, energy and 
partially characterised molecules) and further organised 
into pathways based on their proposed biological func-
tion informed by the Kyoto Encyclopaedia of Genes and 
Genomes (KEGG) database (Supplementary Table  1). 
Unknown metabolites were assigned to an “Unknown” 
family and pathway and denoted by a number prefixed by 
an “X”; these were included in all analyses.

Metabolite data underwent strict quality control (QC), 
as detailed in [10], resulting in 1019 metabolites (Supple-
mentary Notes).

Genetic quality control
Initial QC and imputation were performed centrally 
by the NSHD study team (Supplementary Notes). 
For this analysis, we removed variants that were rare 
(MAF < 5%), with a low call rate (< 98%), or that devi-
ated from Hardy–Weinberg equilibrium (p < 1 × 10−5). 
We additionally removed participants with a low call rate 
(< 98%), mismatching biological and reported sex, or that 
were related (PIHAT < 0.1). All QC was performed using 
PLINK v1.9 (https://​www.​cog-​genom​ics.​org/​plink2) [14]. 
Following QC, genetic and metabolomic data were avail-
able for 1638 participants.

Scanning procedure
The scanning procedure and data processing were under-
taken by the Insight 46 team. Aβ-PET and MRI were 
acquired contemporaneously using a single Biograph 
mMR 3 Tesla PET/MRI scanner (Siemens Healthcare) 
[12]. Aβ burden was quantified over 10  min, approxi-
mately 50  min after intravenous injection with 18F-flor-
betapir (370  mBq. Standardised uptake value ratios 
(SUVRs) were derived using a grey matter cortical com-
posite and an eroded subcortical white matter reference 
region. A cut-off of > 0.6104 was used to define Aβ posi-
tivity being the 99th percentile of the lower (Aβ-negative) 
Gaussian distribution [15]. Participants below this 
threshold were defined as Aβ-negative. Data were pro-
cessed using an in-house pipeline, including attenua-
tion correction using pseudo-CT [12]. For volumetric 
T1-weighted MRI images, visual QC was performed as 
detailed in [12] and processed using the following: 
MAPS [16] for whole-brain volume (with manual edit-
ing if needed), STEPS [17] for left and right hippocam-
pal volumes (with manual editing if needed), and SPM12 
(fil.ion.ucl.ac.uk/spm) [18] for total intracranial volume 

(TIV). Hippocampal volume was calculated as the mean 
volume of the left and right hippocampi.

Covariables
In line with our previous analysis in the full NSHD [10, 
19], covariables were as follows: sex, blood collection 
information (clinic location, age, fasting status), age at 
scan, APOE genotype (ε4 carrier/non carrier; blood 
samples at age 53 or 69 years), BMI (60–64 years nurse 
visit), lipid medication (yes/no; self-reported use in 
24  h preceding blood collection at 60–64  years), child-
hood cognitive ability (15 years), highest level of educa-
tional attainment (no qualifications/ ‘O level’/ ‘A level’ 
or higher; 26  years), childhood socioeconomic position 
(SEP) (father’s current or last known occupation catego-
rised according to the UK Registrar General; 11  years), 
and midlife SEP (own occupation categorised as for 
childhood SEP; 53 years).

Statistical analysis
We previously imputed missing covariable data using 
multiple imputation chained Eqs.  (100 iterations and 
50 imputations) [20] in the full NSHD metabolomics 
dataset. Further details of missing data can be found in 
Table  1. Unless otherwise specified, we carried out all 
analyses in R version 3.6.0 (details of all software and 
packages used can be found in Supplementary Notes). A 
visual summary of our analytical pipeline can be found in 
Fig. 1.

Coexpression network analysis
To explore associations of clusters (termed “modules”) 
of co-expressed metabolites, we applied weighted gene 
coexpression network analysis (WGCNA) [21–23] to 
metabolite data, as detailed previously [10]. First, metab-
olite data were adjusted for sex and blood clinic infor-
mation, and the standardised residuals were used for 
WGCNA. Fourteen modules of highly connected metab-
olites were then identified, and the first principal compo-
nent of each module (termed “module eigenvalue”) was 
derived to allow for relationships between modules and 
outcomes to be examined. Overrepresentation analy-
ses were conducted, using the hypergeometric test, to 
identify enriched pathways within the module and pro-
vide insight into potential biological function [10]. Mod-
ules were allocated an arbitrary colour name using the 
WGCNA package for ease of discussion.

Hub metabolites
Metabolites that are highly connected to their module 
(termed “hub metabolites”) are likely to be function-
ally important and thus present as valuable marker 

https://www.cog-genomics.org/plink2
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candidates [24]. We previously identified associations 
between 35 hubs, defined using correlations between 
metabolites and module eigenvalues exceeding r = 0.65 
(termed “module membership”; kME), and cognitive 
outcomes in the NSHD [10]. As these metabolites were 
selected on the premise of showing associations with 
cognitive function, we additionally looked for hubs that 
may be important in brain imaging outcomes. To do 
this, we extracted any additional metabolites exceeding 
the 0.65 threshold [10] in modules showing significant 
(pFDR < 0.05) associations in the present analysis.

Regression analysis
To allow for direct comparisons, we standardised all 
continuous predictors and outcomes to a mean of 0 
and standard deviation of 1. We then tested relation-
ships between (a) modules and (b) hub metabolites 
using linear regression (for whole-brain volume and 
hippocampal volume) and logistic regression (for Aβ 
status). Model 1 adjusted for basic covariables: sex, 
blood collection information, age at scan, APOE geno-
type, and total intracranial volume (for whole-brain 
volume and hippocampal volume only). As modules 

Table 1  Characteristics of participants included in this analysis

a Childhood cognitive ability Z-scores were calculated in the full National Survey of Health and Development cohort (N = 5362)
b Categories grouped due to low counts (for the purpose of this table only)

Participants with 
genetic and metabolite 
data

Participants with imaging 
and metabolite data

Overall Missing (%) Overall Missing (%)

n 1638 437

Sex, N (%) Male 812 (49.6) 0 229 (52.4) 0

Female 826 (50.4) 208 (47.6)

Age at scan (years), mean (SD) 70.7 (0.7) 0

APOE4 carrier, N (%) Non-carrier 1044 (69.6) 8.5 306 (70.3) 0.5

Carrier 455 (30.4) 129 (29.7)

Amyloid status, N (%) Negative 348 (81.1) 1.8

Positive 81 (18.9)

Hippocampal volume in ml, mean (SD) 3.1 (0.3) 0.5

Brain volume in ml, mean (SD) 1101.8 (99.3) 0.5

Total intracranial volume in ml, mean (SD) 1435.9 (132.2) 0.5

Age at blood collection (years), mean (SD) 63.2 (1.1) 0 63.3 (1.1) 0

Time between blood collection and imaging visit (years), mean 
(SD)

7.4 (1.3) 0

Lipid medication use (age 60–64), N (%) No 1232 (75.2) 0 335 (76.7) 0

Yes 406 (24.8) 102 (23.3)

Body mass index (age 60–64) in kg/m2, mean (SD) 27.8 (4.7) 0.1 27.4 (4.0) 0

Childhood cognitive ability (age 15)a, z-score, mean (SD) 0.2 (0.8) 14.3 0.5 (0.7) 8.2

Childhood socioeconomic position (age 11), N (%) Unskilled 80 (5.1) 5 18 (4.1) 0.5

Partly skilled 274 (17.6) 64 (14.7)

Manual skilled 462 (29.7) 106 (24.4)

Nonmanual skilled 276 (17.7) 90 (20.7)

Intermediate 346 (22.2) 110 (25.3)

Professional 118 (7.6) 47 (10.8)

Adult socioeconomic position (age 53), N (%) Unskilled or Partly skilledb 205 (12.5) 0.4 26 (5.9) 0

Manual skilled 238 (14.6) 40 (9.2)

Nonmanual skilled 380 (23.3) 91 (20.8)

Intermediate 680 (41.7) 225 (51.5)

Professional 129 (7.9) 55 (12.6)

Highest educational attainment (age 26), N (%) No qualification 446 (28.6) 4.9 65 (15.3) 3

Up to GCSE 446 (28.6) 125 (29.5)

A-level or higher 665 (42.7) 234 (55.2)
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were already adjusted for sex and blood clinic infor-
mation, these covariables were not additionally 
included for module analyses. Model 2 additionally 
adjusted for lipid-related factors: BMI and lipid medi-
cation use. Finally, model 3 further adjusted for child-
hood cognitive ability, educational attainment, and 
SEP (parental and midlife).

Analyses were conducted on each imputed dataset and 
pooled using Rubin’s rules [25]. Regression assumptions 
were checked by examination of the residuals. We applied 
false discovery rate (FDR) correction using the Benja-
mini–Hochberg procedure [26] with an alpha = 0.05. 
FDR correction was applied separately to each analysis 
(module and hub) and each outcome.

Fig. 1  Analysis pipeline
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Polygenic risk scores
To explore whether levels of key metabolites were influ-
enced by genetic risk for AD, we investigated associations 
between AD polygenic risk scores (PRS)—a weighted sum 
of genetic variants associated with a trait or disease—and 
hub metabolites and modules that significantly associ-
ated with an imaging outcome (pFDR < 0.05). We obtained 
genome-wide association study summary statistics from 
Kunkle et al. [27] (N = 63,926; 21,982 AD clinically ascer-
tained cases, 41,944 controls), which were used as the 
base data for PRS analyses. Using PRSice-2 [28], we com-
puted PRS in the NSHD, both including and excluding 
SNPs in the APOE region (chr 19, GRCh37 coordinates 
44,912,079 to 45,912,079) [29]. Two p-value thresholds 
(PT)—previously identified to be optimal for PRS includ-
ing and excluding the APOE region—were used for SNP 
selection: 5 × 10−8 (suggested for APOE region included) 
and 0.1 (suggested for APOE region excluded) [30], result-
ing in four PRS. SNPs in linkage disequilibrium (r2 > 0.001 
within a 250-kb window) were clumped, and the SNP 
with the lowest p-value was retained.

We first standardised predictors and outcomes to a 
mean of 0 and standard deviation of 1. Then, we regressed 
PRS on key metabolites and modules, adjusting for sex, 
age, blood collection details, and seven genetic principal 
components (to control for population stratification). We 
applied FDR correction to each analysis—module and 
hub metabolite—using the Benjamini–Hochberg proce-
dure [26] with an alpha = 0.05.

Additional analysis
We conducted several additional analyses to test the 
robustness of our findings (see Supplementary Notes 
for full details). In brief, we first investigated whether 
WGCNA modules, which were curated in the full NSHD, 
were preserved in the Insight 46 subset. Then, for our 
main analyses, we applied a more conservative Bonfer-
roni correction to our findings (module: p < 3.57 × 10−3; 
hub metabolite: p < 1.06 × 10−3). Finally, we explored 
whether lifestyle and related factors (lifetime smok-
ing, diet, exercise, blood pressure, and alcohol intake) 
explained any of our results.

Results
Participant characteristics
Participant characteristics can be found in Table 1 (see 
Supplementary Notes for characteristics split by Aβ 
status).

Metabolite coexpression network modules
Overall, we identified three modules that showed associa-
tions with brain volume outcomes (pFDR < 0.05) and none 

(p > 0.05) with Aβ status. Full results can be found in Sup-
plementary Table 2 and are visualised in Fig. 2. Results of 
the fully adjusted model are discussed hereafter.

We report associations between higher expression of 
two lipid modules and smaller whole-brain volumes: the 
brown module, enriched in diacylglycerol (DAG) and 
phosphatidylethanolamine (PE) pathways (ß =  − 0.066, 
95%CI = [− 0.11, − 0.019], p = 0.006, pFDR = 0.044) and 
the blue module, enriched in various fatty acids path-
ways (ß =  − 0.072, 95% CI = [− 0.12, − 0.026], p = 0.0021, 
pFDR = 0.035). Higher expression of the yellow mod-
ule, enriched in sphingolipid metabolism and related 
pathways, was associated with a larger hippocampal 
volume (ß = 0.14, 95% CI = [0.055, 0.23], p = 0.0017, 
pFDR = 0.035).

Hub metabolites
We explored associations between 81 metabolites that 
were highly connected (kME > 0.65) in significant mod-
ules identified in 3.2 and 35 that were identified to be 
hubs in our previous study on cognitive function. Across 
all models, we report 30 key metabolites after FDR cor-
rection, of which 13 were previously associated with cog-
nitive outcomes (Fig.  3). No associations were detected 
for any metabolite and Aβ status after FDR correction, 
although some nominal associations were observed (3 
cyan and 1 yellow metabolite; Supplementary Table 1 and 
Fig. 3).

In the fully adjusted model, 22 metabolites were asso-
ciated (pFDR < 0.05) with an imaging outcome (whole-
brain volume: 22; hippocampal volume: 4). Of the 22, 10 
metabolites belonged to the yellow module (pathways: 
sphingolipid metabolism) and were positively associ-
ated with larger brain volumes. Twelve metabolites were 
negatively associated with brain volumes: six belonging 
to the blue module (pathways: fatty acid (monohydroxy; 
dicarboxylate), long chain PUFA (n3 and n6), glyc-
erolipid metabolism), four to the brown module (path-
ways: PE, phosphatidylcholine (PC), DAG), and two to 
additional modules identified in our previous analysis 
of cognitive function (pathways: fatty acid metabolism 
(acyl carnitine); methionine, cysteine, SAM and taurine 
metabolism).

Polygenic risk scores
We investigated whether modules and hub metabolites 
that associated with an imaging measure (pFDR < 0.05) 
were also associated with polygenic risk for AD (APOE 
region included and excluded). We observed no signifi-
cant relationships following FDR correction, and no rela-
tionships were observed for metabolite modules at either 
the nominal or adjusted level of significance.
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At the nominal threshold, we report relationships 
between higher AD PRS and decreased levels of five hub 
metabolites (Fig.  3 and Supplementary Table  3). Three 
DAG and phosphoethanolamine hub metabolites were 
associated with the APOE AD PRS only (PT = 5 × 10−8; 
ß range =  − 0.061 to − 0.050, p range = 0.012 to 0.04, 
pFDR > 0.05). Two PUFA were associated with the 

non-APOE AD PRS (PT = 0.1; DPA: ß =  − 0.077, 95% 
CI = [0.13, − 0.029], p = 0.0018; linolenate: ß =  − 0.054, 
95%CI = [− 0.10, − 0.0056], p = 0.029, pFDR > 0.05); 
these associations weakened with the APOE region 
additionally included (PT = 0.1; DPA: ß =  − 0.058, 95% 
CI = [− 0.11, − 0.0097], p = 0.019, linolenate: ß =  − 0.040, 
95% CI = [− 0.088, 0.0088], p = 0.11).

Fig. 2  Module results. A Heatmap showing relationships between modules and brain imaging outcomes in the basic model (model 1) and final 
model (model 3). The basic model was adjusted for age, sex, blood clinic location, and APOE genotype, and the final model additionally for BMI, 
lipid medication use, childhood cognitive ability, educational attainment, and SEP (parental and midlife). Tiles are coloured by effect direction 
(blue = associated with better outcomes, red = associated with worse outcomes). Effect sizes are presented inside the tiles. Associations significant 
after multiple testing correction are represented by a solid fill and nominal (p < 0.05) by a fainter fill. Module names in bold were additionally 
associated with a cognitive outcome in our previous analysis. Data for all models (1-3) are present in Supplementary Table 2. B Table presenting 
enriched pathways in each module, with the most highly enriched pathways presented first. No pathways were enriched for the tan module.  
Source data are available in [7]
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Additional analysis
Full results from our additional analyses are discussed 
in Supplementary Notes. Briefly, modules showed mod-
erate to large preservation in the Insight 46 subset of 
the NSHD (Supplementary Fig.  1). Following Bonfer-
roni correction (module: p < 3.57 × 10−3; hub metabo-
lite: p < 1.06 × 10−3), all modules and nine metabolites 
remained associated with an outcome, with 21 no longer 
reaching the adjusted level of significance. Further adjust-
ment for life course factors resulted in minimal changes 
(Supplementary Tables 4 and 5).

Discussion
In a population-based cohort, we identified three mod-
ules of coexpressed lipids (phospholipids and DAGs, 
fatty acids, and sphingolipids) that were associated with 

whole-brain or hippocampal volume and 22 highly con-
nected metabolites within these that present as potential 
markers for additional study. We report no significant met-
abolic associations for Aβ status following multiple testing 
correction, nor for AD polygenic risk in our genetic analy-
ses, although some relationships were seen at the nominal 
level. Taken together, these findings highlight associations 
between lipids and later life brain structure, with no strong 
evidence to suggest relationships are specific to AD-related 
pathology (as measured through Aβ-PET and PRS).

Fatty acids in whole‑brain volume
First, we found that higher expression of the blue mod-
ule—enriched in several fatty acid pathways—was asso-
ciated with smaller whole-brain volumes. We identified 

Fig. 3  Hub metabolite results. Heatmap showing relationships between key hub metabolites (pFDR < 0.05) and brain imaging outcomes in the 
basic model (model 1) and final model (model 3), as well as relationships between these metabolites and Alzheimer’s disease polygenic risk scores 
(best threshold shown). The basic model was adjusted for age, sex, blood clinic location, and APOE genotype, and the final model additionally for 
BMI, lipid medication use, childhood cognitive ability, educational attainment, and SEP (parental and midlife). Tiles are coloured by effect direction 
(blue = associated with better outcomes, red = associated with worse outcomes). Effect sizes are presented inside the tiles. Associations significant 
after multiple testing correction are represented by a solid fill and nominal (p < 0.05) by a fainter fill. Metabolites are organised by both module 
(indicated via the colour panel on the right) and pathway (specified next to the module colour panel). Metabolite names in bold were additionally 
associated with a cognitive outcome in our previous analysis. Data for all models (1-3) are present in Supplementary Table 1. AD, Alzheimer’s 
disease; DMTPA, 2,3 dihydroxy-5-methylthio-4-pentenoic acid; NSHD, National Survey of Health and Development; PRS, polygenic risk score
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eight hub metabolites in this module, belonging to fatty 
acid pathways (long chain PUFA (n3 and n6); monohy-
droxy; dicarboxylate; medium chain), as well as glycerol 
from the glycerolipid metabolism pathway. These path-
ways are tightly linked: fatty acids and glycerol constitute 
phospholipids and triglycerides, and dicarboxylate and 
monohydroxy fatty acids are oxidative products of PUFA 
and other fatty acids.

Upregulation of this module and hub metabolites may 
thus represent changes in lipid metabolism, including 
enhanced lipid breakdown, accumulation of free fatty 
acids and glycerol in the blood, and alterations in fatty 
acid oxidation—all of which have been linked to neuro-
degeneration and AD [31–33]. Worth noting, however, 
is that while n6 PUFA have been typically linked to risk 
of neurodegenerative disease, n3 have been linked to 
decreased risk [34], although both are an area of conten-
tion [35]. Here, we identified one hub (docosapentaeno-
ate; DPA, 22:5n3) to be an n3 fatty acid, contrasting with 
the general consensus among the literature. We addition-
ally observed some suggestive evidence of an association 
between AD genetic risk and PUFA, particularly with the 
APOE region removed; a higher AD PRS was associated 
with decreased levels of two long chain PUFA hubs (lino-
lenate (18:3n3 or 3n6) and DPA), albeit only at a nominal 
significance level. These effect directions align with those 
reported in the literature but were in the unexpected 
direction based on findings in our imaging analysis. 
While it is not possible to draw definitive conclusions, we 
believe these results highlight the need for further work 
in larger, independent samples.

We further identified two module hubs (16-hydroxy-
palmitate and hexadecanedioate) which are products of 
microsomal omega-oxidation—a minor oxidation path-
way for fatty acids. Accumulation thus points to defects 
in mitochondrial β-oxidation pathways, perhaps induced 
by an overload of free fatty acids or vice versa [36, 37]. 
Notably, defective β-oxidation and compensatory omega-
oxidation pathways are thought to induce oxidative stress 
[38, 39]—a key mechanism linked to neurodegeneration, 
which is marked among other things by reduction in 
brain volume [40]. Nevertheless, to our knowledge, these 
metabolites have not been linked to brain health and 
neurodegeneration previously, although they have been 
found to play a role in other phenotypes, such as mortal-
ity and blood pressure [36].

Phospholipids and DAGs in whole‑brain volume
Similar to the module of fatty acids, higher expression of 
the brown module—enriched in PEs and DAGs—associ-
ated with smaller whole-brain volumes. These pathways 
have key roles in membrane structure and cell signalling: 
PEs are a class of phospholipid which form important 

components of cellular membranes [41], and are a pre-
cursor to DAGs, which are components of cellular mem-
branes and secondary messengers [42]. We reported 
associations between higher expression of this module 
and worse short-term memory in our previous analysis 
of cognitive function in the NSHD, although these were 
mostly explained by BMI and lipid medication [10]. Here, 
our results were independent of these factors with mini-
mal attenuations overall.

Within the module, we identified four hub metabo-
lites—two phospholipids and two DAGs. Both subclasses 
have been previously linked to AD and neurodegenera-
tion [43, 44], and higher blood levels have been hypoth-
esised to represent alterations in membrane integrity and 
subsequent degradation [45, 46], although some associa-
tions in the opposite direction have also been reported 
[32, 47]. Three module hubs were additionally associated 
with an AD PRS at the nominal level; this relationship 
appeared to be driven predominantly by APOE and may 
therefore reflect pleiotropic pathways. Again, these were 
in the opposite direction to our findings for whole-brain 
volume and did not survive multiple testing correction, 
and so should be interpreted with caution.

Sphingolipids in hippocampal volume and whole‑brain 
volume
We highlighted associations between higher levels of 
sphingolipids, a lipid class that contain important con-
stituents of cellular membranes [48], and larger hip-
pocampal and whole-brain volumes. Our findings were 
observed for sphingomyelins in particular, a subclass that 
are especially abundant in the CNS, where they form piv-
otal components of neuronal membranes and play key 
roles in signal transduction [49]. Given their biological 
role, it is unsurprising that sphingolipids have been previ-
ously linked to brain health and pathology [50, 51]. Here, 
we report associations between a module enriched in 
sphingolipids and hippocampal volume, as well as several 
sphingomyelin hub metabolites and whole-brain volume.

We previously reported similar findings for sphin-
golipids and several cognitive outcomes; however, after 
we adjusted for childhood cognitive ability and educa-
tion in particular, these were entirely attenuated [10]. 
Interestingly, we did not observe the same pattern here, 
with relationships showing negligible attenuations 
overall, although it is worth noting that childhood cog-
nitive ability and education show much weaker asso-
ciations with structural brain measures and thus less 
likely to confound associations. We hypothesised that 
attenuations could represent earlier relationships we 
are unable to capture without longitudinal metabolite 
data, shared genetic or environmental underpinnings, 
or confounding by reverse causation, i.e. increased 
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sphingolipid levels may be consequential to higher 
cognitive function in early life, and education may be 
capturing shared components. With no earlier measure 
of brain volume, the latter could extend to our present 
findings, although previous research has linked sphin-
gomyelins to longitudinal markers of pathology [50, 
52, 53]. Another possibility is that sphingolipids may 
have different involvements in cognitive function and 
later life brain volume, or may be particularly impor-
tant during sensitive age periods, for example in cogni-
tive development as well as during vulnerable periods 
in later life with regard to structural integrity [48]. 
Expanding this to longitudinal data, alongside interro-
gating relationships using MR, will allow for a greater 
insight into our findings.

Limited relationships were seen for Aβ status and AD 
polygenic risk
Interestingly, we saw limited metabolic relationships for 
Aβ status; no module showed associations (p > 0.05), and 
a handful of metabolites were associated at the nominal 
threshold only. Possibly, there are no robust associations 
between these metabolites and Aβ, or independent of 
APOE, although other work has reported differently [5, 
7]. Alternatively, this may reflect power, particularly given 
the relatively young age of Insight 46 participants and the 
smaller sample that were Aβ PET-positive at this stage. 
Our measure of amyloid load (PET) reflects the deposi-
tion of fibrillar amyloid plaque; it is possible that meas-
uring upstream, soluble forms of Aβ may both increase 
the numbers who are amyloid positive and allow for an 
exploration of whether different metabolic pathways are 
associated with different stages of β-amyloid formation. 
Further follow-up studies, including CSF measures of sol-
uble Aβ burden, are planned. In addition, five metabolites 
were associated with an AD PRS at the nominal level, but 
none survived multiple testing correction, and no other 
metabolic associations were seen at either threshold. As 
modules and metabolites were selected for PRS analyses 
based on showing significant associations in our imaging 
analyses, which were observed for whole-brain or hip-
pocampal volume, and not Aβ, this suggests that these 
metabolites may not be specific to AD. Alternatively, 
it may also reflect power; expanding our work in larger 
samples is warranted.

Strengths and limitations
Strengths of the study include age-matched cohort with 
information on a large range of confounders across the 
life course, including rarely available measures of cog-
nitive development, as well as data on both imaging 

and subdomains of cognitive function. Moreover, the 
metabolomics data in this study represent a far more 
comprehensive proportion of the metabolome than 
in past clinical metabolomic studies of neuroimag-
ing parameters [7, 53]. Nevertheless, the results of this 
study should be interpreted in the context of the fol-
lowing limitations. First, our findings may not extend to 
the general population. Study participants are all white 
and, compared to the full NSHD cohort, participants 
enrolled in Insight 46 were on average of slightly better 
self-rated health, cognitive ability, and SEP. Next, our 
findings may be subject to residual confounding; further 
study is needed to disentangle causal relationships. It is 
additionally possible that some metabolite degradation 
may have occurred despite storage at –  80  °C [54, 55]. 
However, strict quality control and best practices were 
implemented, and factors related to storage time and 
potential technical differences were adjusted. Finally, 
as there are currently few cohorts with genetic, serum 
LC–MS, and brain imaging data, we are not yet able to 
replicate our analyses elsewhere.

Conclusions
Our findings highlight relationships between groups 
of lipids and structural brain measures, as well as key 
metabolites within these that are likely to be driving asso-
ciations. Future work should be directed towards under-
standing if these metabolites associate with longitudinal 
changes in brain volumes and whether relationships are 
causal; this could advance our understanding of brain 
health and neurodegeneration and reveal possible targets 
of intervention.
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