13 research outputs found

    Oncogenic transformation in the absence of Xrcc4 targets peripheral B cells that have undergone editing and switching

    Get PDF
    Nonhomologous end-joining (NHEJ) repairs DNA double-strand breaks (DSBs) during V(D)J recombination in developing lymphocytes and during immunoglobulin (Ig) heavy chain (IgH) class switch recombination (CSR) in peripheral B lymphocytes. We now show that CD21-cre–mediated deletion of the Xrcc4 NHEJ gene in p53-deficient peripheral B cells leads to recurrent surface Ig-negative B lymphomas (“CXP lymphomas”). Remarkably, CXP lymphomas arise from peripheral B cells that had attempted both receptor editing (secondary V[D]J recombination of IgÎș and Igλ light chain genes) and IgH CSR subsequent to Xrcc4 deletion. Correspondingly, CXP tumors frequently harbored a CSR-based reciprocal chromosomal translocation that fused IgH to c-myc, as well as large chromosomal deletions or translocations involving IgÎș or Igλ, with the latter fusing Igλ to oncogenes or to IgH. Our findings reveal peripheral B cells that have undergone both editing and CSR and show them to be common progenitors of CXP tumors. Our studies also reveal developmental stage-specific mechanisms of c-myc activation via IgH locus translocations. Thus, Xrcc4/p53-deficient pro–B lymphomas routinely activate c-myc by gene amplification, whereas Xrcc4/p53-deficient peripheral B cell lymphomas routinely ectopically activate a single c-myc copy

    Rasgrp1 mutation increases naĂŻve T-cell CD44 expression and drives mTOR-dependent accumulation of Helios+ T cells and autoantibodies

    No full text
    Missense variants are a major source of human genetic variation. Here we analyze a new mouse missense variant, Rasgrp1Anaef, with an ENU-mutated EF hand in the Rasgrp1 Ras guanine nucleotide exchange factor. Rasgrp1Anaef mice exhibit anti-nuclear autoantibodies and gradually accumulate a CD44hi Helios+ PD-1+ CD4+ T cell population that is dependent on B cells. Despite reduced Rasgrp1-Ras-ERK activation in vitro, thymocyte selection in Rasgrp1Anaef is mostly normal in vivo, although CD44 is overexpressed on naĂŻve thymocytes and T cells in a T-cell-autonomous manner. We identify CD44 expression as a sensitive reporter of tonic mTOR-S6 kinase signaling through a novel mouse strain, chino, with a reduction-of-function mutation in Mtor. Elevated tonic mTOR-S6 signaling occurs in Rasgrp1Anaef naĂŻve CD4+ T cells. CD44 expression, CD4+ T cell subset ratios and serum autoantibodies all returned to normal in Rasgrp1AnaefMtorchino double-mutant mice, demonstrating that increased mTOR activity is essential for the Rasgrp1Anaef T cell dysregulation

    Rasgrp1 mutation increases naĂŻve T-cell CD44 expression and drives mTOR-dependent accumulation of Heliosâș T cells and autoantibodies

    Get PDF
    Missense variants are a major source of human genetic variation. Here we analyze a new mouse missense variant, Rasgrp1áŽŹâżá”ƒá”‰á¶ , with an ENU-mutated EF hand in the Rasgrp1 Ras guanine nucleotide exchange factor. Rasgrp1áŽŹâżá”ƒá”‰á¶  mice exhibit anti-nuclear autoantibodies and gradually accumulate a CD44hi Heliosâș PD-1âș CD4âș T cell population that is dependent on B cells. Despite reduced Rasgrp1-Ras-ERK activation in vitro, thymocyte selection in Rasgrp1áŽŹâżá”ƒá”‰á¶  is mostly normal in vivo, although CD44 is overexpressed on naĂŻve thymocytes and T cells in a T-cell-autonomous manner. We identify CD44 expression as a sensitive reporter of tonic mTOR-S6 kinase signaling through a novel mouse strain, chino, with a reduction-of-function mutation in Mtor. Elevated tonic mTOR-S6 signaling occurs in Rasgrp1áŽŹâżá”ƒá”‰á¶  naĂŻve CD4âș T cells. CD44 expression, CD4âș T cell subset ratios and serum autoantibodies all returned to normal in Rasgrp1áŽŹâżá”ƒá”‰á¶ Mtorá¶œÊ°â±âżá”’ double-mutant mice, demonstrating that increased mTOR activity is essential for the Rasgrp1áŽŹâżá”ƒá”‰á¶  T cell dysregulation

    Rasgrp1 mutation increases naĂŻve T-cell CD44 expression and drives mTOR-dependent accumulation of Helios+ T cells and autoantibodies

    Get PDF
    Missense variants are a major source of human genetic variation. Here we analyze a new mouse missense variant, Rasgrp1(Anaef), with an ENU-mutated EF hand in the Rasgrp1 Ras guanine nucleotide exchange factor. Rasgrp1(Anaef) mice exhibit anti-nuclear autoantibodies and gradually accumulate a CD44(hi) Helios(+) PD-1(+) CD4(+) T cell population that is dependent on B cells. Despite reduced Rasgrp1-Ras-ERK activation in vitro, thymocyte selection in Rasgrp1(Anaef) is mostly normal in vivo, although CD44 is overexpressed on naĂŻve thymocytes and T cells in a T-cell-autonomous manner. We identify CD44 expression as a sensitive reporter of tonic mTOR-S6 kinase signaling through a novel mouse strain, chino, with a reduction-of-function mutation in Mtor. Elevated tonic mTOR-S6 signaling occurs in Rasgrp1(Anaef) naĂŻve CD4(+) T cells. CD44 expression, CD4(+) T cell subset ratios and serum autoantibodies all returned to normal in Rasgrp1(Anaef)Mtor(chino) double-mutant mice, demonstrating that increased mTOR activity is essential for the Rasgrp1(Anaef) T cell dysregulation. DOI: http://dx.doi.org/10.7554/eLife.01020.00

    World Congress Integrative Medicine & Health 2017: Part one

    Get PDF

    Caspase-2 Cleavage of BID Is a Critical Apoptotic Signal Downstream of Endoplasmic Reticulum Stress▿

    No full text
    The accumulation of misfolded proteins stresses the endoplasmic reticulum (ER) and triggers cell death through activation of the multidomain proapoptotic BCL-2 proteins BAX and BAK at the outer mitochondrial membrane. The signaling events that connect ER stress with the mitochondrial apoptotic machinery remain unclear, despite evidence that deregulation of this pathway contributes to cell loss in many human degenerative diseases. In order to “trap” and identify the apoptotic signals upstream of mitochondrial permeabilization, we challenged Bax−/− Bak−/− mouse embryonic fibroblasts with pharmacological inducers of ER stress. We found that ER stress induces proteolytic activation of the BH3-only protein BID as a critical apoptotic switch. Moreover, we identified caspase-2 as the premitochondrial protease that cleaves BID in response to ER stress and showed that resistance to ER stress-induced apoptosis can be conferred by inhibiting caspase-2 activity. Our work defines a novel signaling pathway that couples the ER and mitochondria and establishes a principal apoptotic effector downstream of ER stress
    corecore