3 research outputs found
Optimal packetisation of MPEG-4 using RTP over mobile networks
The introduction of third-generation wireless networks should result in real-time mobile
video communications becoming a reality. Delivery of such video is likely to be facilitated by the realtime
transport protocol (RTP). Careful packetisation of the video data is necessary to ensure the
optimal trade-off between channel utilisation and error robustness. Theoretical analyses for two basic
schemes of MPEG-4 data encapsulation within RTP packets are presented. Simulations over a GPRS
(general packet radio service) network are used to validate the analysis of the most efficient scheme.
Finally, a motion adaptive system for deriving MPEG-4 video packet sizes is presented. Further
simulations demonstrate the benefits of the adaptive system
Multimodal coherent anti-Stokes Raman scattering microscopy reveals microglia-associated myelin and axonal dysfunction in multiple sclerosis-like lesions in mice
Myelin loss and axonal degeneration predominate in many neurological disorders; however, methods to visualize them simultaneously in live tissue are unavailable. We describe a new imaging strategy combining video rate reflectance and fluorescence confocal imaging with coherent anti-Stokes Raman scattering (CARS) microscopy tuned to CH2 vibration of myelin lipids, applied in live tissue of animals with chronic experimental autoimmune encephalomyelitis (EAE). Our method allows monitoring over time of demyelination and neurodegeneration in brain slices with high spatial resolution and signal-to-noise ratio. Local areas of severe loss of lipid signal indicative of demyelination and loss of the reflectance signal from axons were seen in the corpus callosum and spinal cord of EAE animals. Even in myelinated areas of EAE mice, the intensity of myelin lipid signals is significantly reduced. Using heterozygous knock-in mice in which green fluorescent protein replaces the CX3CR1 coding sequence that labels central nervous system microglia, we find areas of activated microglia colocalized with areas of altered reflectance and CARS signals reflecting axonal injury and demyelination. Our data demonstrate the use of multimodal CARS microscopy for characterization of demyelinating and neurodegenerative pathology in a mouse model of multiple sclerosis, and further confirm the critical role of microglia in chronic inflammatory neurodegeneration