1,537 research outputs found

    Properties and Performance of High-Purity Thermal Barrier Coatings

    No full text
    It has been found that reducing the level of impurity oxides (particularly SiO2 and Al2O3) in 7YSZ, from about 0.2 wt% to below 0.1 wt% raises the sintering resistance and the phase stability of plasma-sprayed coatings. The implications for the usage of these coatings at elevated temperatures are examined. It is concluded that using relatively high-purity powder of this type is likely to confer substantial benefits in terms of the thermomechanical stability of the coatings under service conditions

    Effect of Heat Treatment on Pore Architecture and Associated Property Charges in Plasma Sprayed TBCs

    No full text
    Plasma sprayed TBCs exhibit many interlamellar pores, voids and microcracks. These microstructural features are primarily responsible for the low global stiffnesses and the low thermal conductivities commonly exhibited by such coatings. The pore architecture thus has an important influence on such thermophysical properties. In the present work, the effect of heat treatment (at temperatures up to 1400C, for times of up to 100 hours) and coating purity on the pore architecture in detached YSZ top coats has been characterised by Mercury Intrusion Porosimetry (MIP) and BJH Analysis. While the overall porosity level (measured by densitometry) remained relatively unaffected (at around 10-12%) after the heat treatments concerned, there were substantial changes in the pore size distribution and the (inter-connected) specific surface area, although these changes occurred less rapidly with coatings produced using high purity powders. Fine pores (<~50 nm) rapidly disappeared, while the specific surface area dropped dramatically, particularly at high treatment temperatures (>~1300C). These changes are thought to be associated with improved inter-splat bonding and increased contact area, leading to disappearance of much of the very fine inter-splat porosity. These microstructural changes are reflected in sharply increased stiffness and thermal conductivity. Measured thermal conductivity data are compared with predictions from a recently-developed analytical model [1], using the deduced inter-splat contact area results as input parameters. Good agreement is obtained, suggesting that the model captures the main geometrical effects and the porosity architecture measurements reflect the most significant microstructural changes. REF.1. Golosnoy, IO, Tsipas, SA and Clyne, TW, An Analytical Model For Simulation Of Heat Flow In Plasma Sprayed Thermal Barrier Coating, J. Thermal Spray Techn., 14 (2005) 205-214

    A MERLIN Observation of PSR B1951+32 and its associated Plerion

    Full text link
    In an investigative 16 hour L band observation using the MERLIN radio interferometric array, we have resolved both the pulsar PSR B1951+32 and structure within the flat spectral radio continuum region, believed to be the synchrotron nebula associated with the interaction of the pulsar and its `host' supernova remnant CTB 80. The extended structure we see, significant at ∌\sim 4.5 σ\sigma, is of dimensions 2.5" ×\times 0.75", and suggests a sharp bow shaped arc of shocked emission, which is correlated with similar structure observed in lower resolution radio maps and X-ray images. Using this MERLIN data as a new astrometric reference for other multiwavelength data we can place the pulsar at one edge of the HST reported optical synchrotron knot, ruling out previous suggested optical counterparts, and allowing an elementary analysis of the optical synchrotron emission which appears to trail the pulsar. The latter is possibly a consequence of pulsar wind replenishment, and we suggest that the knot is a result of magnetohydrodynamic (MHD) instabilities. These being so, it suggests a dynamical nature to the optical knot, which will require high resolution optical observations to confirm.Comment: 12 pages, 2 figures. Accepted for publication in ApJ

    Large scale flow effects, energy transfer, and self-similarity on turbulence

    Full text link
    The effect of large scales on the statistics and dynamics of turbulent fluctuations is studied using data from high resolution direct numerical simulations. Three different kinds of forcing, and spatial resolutions ranging from 256^3 to 1024^3, are being used. The study is carried out by investigating the nonlinear triadic interactions in Fourier space, transfer functions, structure functions, and probability density functions. Our results show that the large scale flow plays an important role in the development and the statistical properties of the small scale turbulence. The role of helicity is also investigated. We discuss the link between these findings and intermittency, deviations from universality, and possible origins of the bottleneck effect. Finally, we briefly describe the consequences of our results for the subgrid modeling of turbulent flows

    High speed video evidence for localised discharge cascades during plasma electrolytic oxidation

    Get PDF
    Information is presented from high speed video imaging of the free surface of coatings being grown on aluminium substrates by PEO processing. The exposure time during image capture ranged down to 5.5 ÎŒs, while the linear spatial resolution of the images ranged upwards from about 12 ÎŒm. The area being viewed was about 2.4 mm2, which was taken to be representative of the substrate area as a whole (~ 129 mm2). PEO processing was carried out at 50 Hz AC. The periods over which image sequences were captured was about 100 ms, covering several cycles of variation of the applied potential. This operation was repeated periodically while the coating thickness increased from a few microns to several tens of microns. During the imaging periods, it was typically observed that tens or hundreds of individual discharges were occurring, all of them readily distinguishable from the background light levels. Their duration was of the order of several tens of microseconds. It was noticeable that they tended to occur in “cascades” at particular locations, each sequence comprising tens or hundreds of individual discharges, with an “incubation” period between them of the order of several hundreds of microseconds. It seems likely that they all occurred during the positive (anodic) half-cycle, while the applied voltage was sufficiently high. An individual cascade tended to persist (at the same location) over several voltage cycles. As the coating became thicker, these characteristics broadly persisted, although individual discharges became longer-lived and more energetic. An attempt is made to relate these observations to the overall picture of how coating growth takes place during PEO processing, and also to the overall energy consumption.This work has been supported by EPSRC (grant number EP/I001174/1), by a Sims Scholarship (for SCT) in Cambridge University and by Keronite plc. The research also forms part of the activities of the COST TD 1208 Network.This is the final published version. It first appeared at http://www.sciencedirect.com/science/article/pii/S0257897215000778#

    The Population of Tiny Near-Earth Objects Observed by NEOWISE

    Get PDF
    Only a very small fraction of the asteroid population at size scales comparable to the object that exploded over Chelyabinsk, Russia has been discovered to date, and physical properties are poorly characterized. We present previously unreported detections of 106 close approaching near-Earth objects (NEOs) by the Wide-field Infrared Survey Explorer mission's NEOWISE project. These infrared observations constrain physical properties such as diameter and albedo for these objects, many of which are found to be smaller than 100 m. Because these objects are intrinsically faint, they were detected by WISE during very close approaches to the Earth, often at large apparent on-sky velocities. We observe a trend of increasing albedo with decreasing size, but as this sample of NEOs was discovered by visible light surveys, it is likely that selection biases against finding small, dark NEOs influence this finding.Comment: Accepted to Ap

    Small scale structures in three-dimensional magnetohydrodynamic turbulence

    Get PDF
    We investigate using direct numerical simulations with grids up to 1536^3 points, the rate at which small scales develop in a decaying three-dimensional MHD flow both for deterministic and random initial conditions. Parallel current and vorticity sheets form at the same spatial locations, and further destabilize and fold or roll-up after an initial exponential phase. At high Reynolds numbers, a self-similar evolution of the current and vorticity maxima is found, in which they grow as a cubic power of time; the flow then reaches a finite dissipation rate independent of Reynolds number.Comment: 4 pages, 3 figure

    ‘Potentially inappropriate or specifically appropriate?’ Qualitative evaluation of general practitioners views on prescribing, polypharmacy and potentially inappropriate prescribing in older people

    Get PDF
    BACKGROUND: Potentially inappropriate prescribing (PIP) is common in older people in primary care, as evidenced by a significant body of quantitative research. However, relatively few qualitative studies have investigated the phenomenon of PIP and its underlying processes from the perspective of general practitioners (GPs). The aim of this paper is to explore qualitatively, GP perspectives regarding prescribing and PIP in older primary care patients. METHOD: Semi-structured qualitative interviews were conducted with GPs participating in a randomised controlled trial (RCT) of an intervention to decrease PIP in older patients (≄70 years) in Ireland. Interviews were conducted with GP participants (both intervention and control) from the OPTI-SCRIPT cluster RCT as part of the trial process evaluation between January and July 2013. Interviews were conducted by one interviewer and audio recorded. Interviews were transcribed verbatim and a thematic analysis was conducted. RESULTS: Seventeen semi-structured interviews were conducted (13 male; 4 female). Three main, inter-related themes emerged (complex prescribing environment, paternalistic doctor-patient relationship, and relevance of PIP concept). Patient complexity (e.g. polypharmacy, multimorbidity), as well as prescriber complexity (e.g. multiple prescribers, poor communication, restricted autonomy) were all identified as factors contributing to a complex prescribing environment where PIP could occur, as was a paternalistic-doctor patient relationship. The concept of PIP was perceived to be of variable usefulness to GPs and the criteria to measure it may be at odds with the complex processes of prescribing for this patient population. CONCLUSIONS: Several inter-related factors contributing to the occurrence of PIP were identified, some of which may be amenable to intervention. Improvement strategies focused on improved management of polypharmacy and multimorbidity, and communication across primary and secondary care could result in substantial improvements in PIP. TRIAL REGISTRATION: Current controlled trials ISRCTN4169400

    Coordinating government and community support for community language teaching in Australia: Overview with special attention to New South Wales

    Get PDF
    An overview of formal government language-in-education planning for community languages (CLs) that has been undertaken in Australia and New South Wales is provided, moving from the more informal programmes provided in the 1980s to school-oriented programmes and training at the turn of the century. These programmes depend on community support; for many of the teachers from the communities, methodological training is needed to complement their language and cultural skills. At the same time, Commonwealth (Federal) and State support for CL programmes has improved their quality and provides students with opportunities to study CLs at the senior secondary matriculation level. The paper concludes with specific recommendations for greater recognition of CL schools and for greater attention to CL teacher preparation
    • 

    corecore