1,136 research outputs found

    A revised checklist of Hawaiian mosses

    Get PDF
    A revised and updated literature-based checklist of Hawaiian mosses is presented. Geographic coverage includes the eight main Hawaiian Islands; the Northwestern Hawaiian Islands are excluded. The checklist is alphabetically ordered by scientific names; the family is noted for each genus. Synonyms and misapplied names are cross-referenced to the accepted names. A bibliography of supporting references is included

    Location of attachment moiety on Mycoplasma pneumoniae.

    Get PDF
    Mycoplasma pneumoniae initiates infection in the human host by attachment to respiratory epithelium. The organism attaches by a specialized terminal structure. Monoclonal antibodies to an organism surface protein (P1) inhibited attachment to respiratory epithelium and were localized to the tip structure by a ferritin antibody label. The P1 protein was degraded by trypsin treatment to smaller polypeptides that possessed the same antigenic determinants as the larger P1 protein when reacted with the specific monoclonal antibody, and evidence has been provided for the existence of multiple antigenic determinants on the attachment protein

    Effects of Sweep Angle on the Boundary-Layer Stability Characteristics of an Untapered Wing at Low Speeds

    Get PDF
    An investigation was conducted in the Ames 12-Foot Low-Turbulence Pressure Tunnel to determine the effects of sweep on the boundary-layer stability characteristics of an untapered variable-sweep wing having an NACA 64(2)A015 section normal to the leading edge. Pressure distribution and transition were measured on the wing at low speeds at sweep angles of 0, 10, 20, 30, 40, and 50 deg. and at angles of attack from -3 to 3 deg. The investigation also included flow-visualization studies on the surface at sweep angles from 0 to 50 deg. and total pressure surveys in the boundary layer at a sweep angle of 30 deg. for angles of attack from -12 to 0 deg. It was found that sweep caused premature transition on the wing under certain conditions. This effect resulted from the formation of vortices in the boundary layer when a critical combination of sweep angle, pressure gradient, and stream Reynolds number was attained. A useful parameter in indicating the combined effect of these flow variables on vortex formation and on beginning transition is the crossflow Reynolds number. The critical values of crossflow Reynolds number for vortex formation found in this investigation range from about 135 to 190 and are in good agreement with those reported in previous investigations. The values of crossflow Reynolds number for beginning transitions were found to be between 190 and 260. For each condition (i.e., development of vortices and initiation of transition at a given location) the lower values in the specified ranges were obtained with a light coating of flow-visualization material on the surface. A method is presented for the rapid computation of crossflow Reynolds number on any swept surface for which the pressure distribution is known. From calculations based on this method, it was found that the maximum values of crossflow Reynolds number are attained under conditions of a strong pressure gradient and at a sweep angle of about 50 deg. Due to the primary dependence on pressure gradient, effects of sweep in causing premature transition are generally first encountered on the lower surfaces of wings operating at positive angles of attack

    Differential Modulation of Ethanol-Induced Sedation and Hypnosis by Metabotropic Glutamate Receptor Antagonists in C57BL/6J Mice

    Get PDF
    Emerging evidence implicates metabotropic glutamate receptor (mGluR) function in the neurobiological effects of ethanol. The recent development of subtype specific mGluR antagonists has made it possible to examine the roles of specific mGluRs in biochemical and behavioral responses to ethanol. The purpose of the present study was to determine if mGluRs modulate the acute sedative-hypnotic properties of ethanol in mice

    Unexpected Caisson Problems, Soil Structure Interaction Predictions and Required Ground Modification

    Get PDF
    Recent advances in strain measurement using optical fibers provide new opportunities for monitoring the performance of geotechnical structures during and after construction. Brillouin optical time-domain reflectometry (BOTDR) is an innovative technique that allows measurement of full strain profiles using standard optical fibers. In this paper, two case studies illustrating the application of the distributed optical fiber strain sensors are presented. One is monitoring of an old masonry tunnel when a new tunnel was constructed nearby and the other is monitoring the behavior of secant piled walls for basement construction. Both sites are located in London. The advantages and limitations of this new sensor technology for monitoring geotechnical structures are discussed. The paper describes the caisson construction problems encountered and the required modification necessary for a 55-story residential high-rise in Chicago’s near north side. Belled caissons were planned on a very thin hardpan bearing layer which was underlain by water bearing dense silt that extended to dolomite bedrock. Three filtered dewatering wells extending into the fractured rock surface were planned to reduce the hydrostatic pressure head within the silt to permit the belled construction. A complete collapse of the dense silt layer during the installation of the first dewatering well undermined the planned belled caisson foundation system. An additional subsurface investigation, a compaction grouting program and further in-situ pressuremeter testing was then performed. Subsequent modified performance predictions required the addition of selective micropile underpinning after completion of the planned system of grade beams and belled caisson installation. Settlement monitoring during building construction confirmed settlements within or less than the predicted settlement range

    From Resistance to Receptiveness: Farmer Willingness to Participate in Extension Discussions About Climate Variability and Climate Change

    Get PDF
    Identifying what Extension professionals believe are the critical elements of a communication strategy that is most likely to encourage agricultural producers to participate in discussions of climate variability and climate change is pivotal to providing timely solutions to issues facing farmers. The current study involved interviews with 50 Extension professionals from four southeastern states (Alabama, Florida, Georgia, and South Carolina) who were engaged in ongoing work related to climate and agriculture. Respondents were asked to assess how best to engage farmers in conversations related to climate variability and climate change. Qualitative analysis showed that Extension professionals recommended avoiding content related to politics, attribution of climate change to human causes, and telling farmers what to do. Respondents recommended emphasizing adaptation strategies, climate variability over climate change, evidence that climate change exists, and the financial benefits for farmers. In addition, Extension professionals proposed several delivery methods they thought would be most effective with farmers, including delivery tailored to the characteristics of the audience, a positive overall tone, and an understanding that engagement should be viewed as a long-term process based on building relationships with farmers. The findings suggest that farmers are a potentially receptive audience on climate issues when properly approached
    • …
    corecore