2 research outputs found

    Chemistry of new particle formation and growth events during wintertime in suburban area of Beijing : Insights from highly polluted atmosphere

    Get PDF
    The high frequency of new particle formation (NPF) events observed under polluted atmospheric conditions is still poorly understood. To improve our understanding of NPF and its effects, the particle number size distribution (3-1000 nm) and submicron particle chemical composition were measured from 4 November 2017 to 17 January 2018 in suburban Beijing. During this intense campaign, 22 NPF events were identified with a frequency of 29%, including 11 cases that occurred under "clean" conditions (C-NPF) and 11 cases that occurred under "polluted" conditions (P-NPF). The observed formation rate (J(3)) and condensation sink were 4.6-148.9 cm(-3).s(-1) and 0.01-0.07 s(-1), and the majority of NPF events occurred when the condensation sink (CS) values below 0.03 s(-1), indicating that condensation vapor likely constitutes the critical limiting factor for NPF events. The correlations between log J(3) and [H2SO4] that close to previous CLOUD experimental results in the majority of NPF events (68%) suggest the high nucleation rates (up to 100 cm(-3).s(-1)) would be attributed by the amines that enhancing sulfuric acid nucleation, while the reminding cases (32%) possibly attributed to the H2SO4-NH3 clustering mechanism, which is supported by the theoretical expectations for H2SO4 nucleation with NH3 simulated by the MALTE_BOX model. The observed growth rate varied from 4.9 to 37.0 mm.h(-1), with the dominant contribution (>60%) from sulfuric acid during the early phases of growth (similar to 4 nm), which was also sufficient to explain the observed Q(GR) for 50 nm)Peer reviewe

    Spatial Inhomogeneity of New Particle Formation in the Urban and Mountainous Atmospheres of the North China Plain during the 2022 Winter Olympics

    No full text
    The new particle formation (NPF) process is a significant source of atmospheric secondary particles, which has remarkable impacts on the regional air quality and global radiative forcing. Most NPF studies conduct their measurements at a single site, which can hardly provide information about the regionality of NPF events at large scales (>100 km). During the 2022 Winter Olympic and Paralympic Games, simultaneous measurements of particle number size distributions and NPF-associated precursors were conducted at a mountainous site close to the Winter Olympic Village in Chongli (CL), Zhangjiakou, and an urban site in Beijing (BJ) located 150 km southeast of the CL site. High NPF frequencies were observed at the CL (50%) and BJ (52%) sites; however, the fraction of concurrent NPF events was smaller than the results in other regions. In addition, the wind distributions exhibited distinct air mass origins at the two sites during the concurrent NPF events. Compared with the BJ site, the NPF growth rates were higher at the CL site due to higher levels of volatile organic compounds (VOCs) and radiation. Surprisingly, the formation rates at the CL site were lower than at the BJ site, even with a higher sulfuric acid concentration and lower CS, which may be attributed to lower dimethylamine concentrations in the mountainous area. This study reveals that, although NPF events are commonly thought to occur on regional scales, their intensity and mechanisms may have significant spatial inhomogeneity. Further studies are required to reduce the uncertainty when expanding the mechanisms based on the urban conditions to regional or global scales in the models
    corecore