7 research outputs found

    Comparative study of photodynamic therapy using CW and femtosecond laser at different intensities and wavelengths

    No full text
    A terapia fotodinâmica (TFD) é uma modalidade de tratamento para o câncer baseado na interação da luz com um agente fotossensibilizador (FS) e o oxigênio molecular presente na célula alvo. A TFD apresenta vantagens sobre os métodos tradicionais de tratamentos como o dano seletivo às células neoplásicas, ausência de intervenção cirúrgica, possibilidade de repetição do procedimento e efeitos colaterais controlados. Uma das limitações da técnica é a profundidade de pouca penetração da luz no tecido biológico e consequentemente o volume tecidual tratado. Uma alternativa para superar esta limitação é o emprego de fonte de luz pulsada que comparativamente a irradiação com luz contínua (CW), apresenta maior potência de pico levando a uma maior profundidade de penetração e maior formação de espécies reativas de oxigênio. O objetivo deste trabalho é a avaliação da TFD utilizando fonte de luz pulsada no regime de femtossegundos através de ensaios in vitro da fotodegradação de dois tipos de FSs e da necrose induzida em fígado sadio de ratos (estudos in vivo). Nos estudos in vitro foram avaliadas a fotodegradação do Photogem (PG - 8μg/mL) e do Photodithazine (PDZ - 6μg/mL), para as irradiâncias de 280, 340 e 400 mW/cm2 com PG, e 15, 56 e 112 mW/cm2 para o PDZ. Nos estudos in vivo foram avaliados o perfil de necrose induzida com as fontes de luz CW e pulsado em modelo animal, que receberam PG e PDZ nas concentrações de 1,5 mg/kg e 1,0 mg/kg, respectivamente. Foram irradiados com 74 mW/cm2 (PG) e 102 mW/cm2(PDZ) e dose total de energia de 150 J/cm2. Posteriormente foi avaliada a dependência de profundidade de necrose com a irradiância (60, 80, 107, 127, 138, 188 e 229 mW/cm2) utilizando PG e com dose total entregue de 150 J/cm2. As fontes de luz empregadas foram um laser de diodo 630 nm (PG), um laser de diodo emitindo em 660 nm (PDZ) e um laser de Ti:Safira, taxa de repetição de 1 kHz, comprimento de onda 800 nm e largura de pulso de 75 fs em associação com amplificador paramétrico óptico (APO) para conversão de comprimentos de onda na região de 400 - 1150 nm. Os experimentos in vitro mostraram que taxa de fotodegradação para o PG foi maior utilizando o laser pulsado do que para o laser CW. Quando utilizado o PDZ, o laser CW promoveu uma taxa de fotodegradação maior do que o pulsado. Nos estudos in vivo, foi observada a necrose induzida com laser pulsado cerca de duas vezes mais profunda do que a induzida pelo laser CW, enquanto necrose induzida pelo laser pulsado com PDZ foi maior do que a do laser CW. No estudo da dependência da profundidade de necrose em função da irradiância, o laser pulsado induziu profundidade de necrose maior do que o laser CW para irradiâncias abaixo de 80 mW/cm2, acima desta irradiância, o laser CW e o pulsado não mostraram diferença significativa. Estes resultados mostram que a combinação da fonte de luz pulsada e PG podem ser consideradas como alternativa para aumentar o volume tecidual tratado, porém, devem-se observar os parâmetros empregados para se obter o maior volume tecidual tratado. O mesmo resultado não foi observado para o PDZ como fotossensibilizador, o que indica uma forte dependência dos mecanismos da TFD com o FS e o regime de iluminação empregado.Photodynamic therapy (PDT) is a therapeutic modality for cancer based on light, a photosensitizer agent (PS) and molecular oxygen into the target cells. PDT has advantages over traditional treatments, such as, selective damage to tumor cells, absence of surgical intervention, possibility of repeated procedures and controlled side effects. One of the limitations of PDT is the low light penetration in biological tissues and hence the treated tissue volume. An alternative to overcome this limitation is the use of pulsed light sources that compared to continuous (CW) irradiation, present higher peak power leading to a greater penetration depth and enhancing the reactive oxygen species production. The aim of this study is to evaluate PDT using pulsed light source at femtosecond regime through in vitro photodegradation of two PSs types and in vivo induced necrosis in healthy rat liver. In the in vitro study we evaluated the photodegradation of Photogem (PG - 8μg/mL) and Photodithazine (PDZ - 6μg/mL), at different irradiances (280, 340, and 400 mW/cm2 for PG and 15, 56 and 112 mW/cm2 for PDZ). In the in vivo studies the induced necrosis profile with CW laser and Pulsed Laser were evaluated in animal model which received PG (1,5 mg/kg) and PDZ (1,0 mg/kg) and were irradiated with 74 mW/cm2 and 102 mW/cm2, respectively, and the fluence was 150 J/cm2. After that, the dependence of depth of necrosis with irradiance (60, 80, 107, 127, 138, 188 and 229 mW/cm2) with PG and 150 J/cm2 of fluence was evaluated. The light source used in those studies were a 630 and 660 nm diode laser (PG and PDZ excitation light, respectively) and a Ti:Sapphire Regenerative Amplifier laser, 1 kHz repetition rate, 800 nm wavelength and 75 fs pulse width in association with an optical parametric amplifier (OPA) to convert 400-1150 wavelengths. The in vitro results showed that the PG photodegratation rates were greater to pulsed laser when compared with CW laser. When PDZ was used, the photodegradarion rates with pulsed laser were lower than CW laser. In the in vivo studies, the induced necrosis with pulsed laser was twice the induced by CW laser with PG as photosensitizer. When PDZ was used, the induced necrosis was greater for CW laser than for pulsed laser. For different irradiances, the depth of necrosis induced by CW laser was greater than for pulsed laser below 80 mW/cm2, above this, the pulsed and CW laser did not show difference. These results demonstrated that pulsed light and PG can be considered an alternative to enhance the treated tissue volume. The same was not observed to PDZ, which indicate the strong dependence of PDT mechanisms with PS and the light regime applied

    Evaluation of photodynamic response in normal rat liver using a femtosecond regime pulsed irradiation

    No full text
    A terapia fotodinâmica (TFD) é uma promissora técnica para o tratamento de câncer e de outras patologias. O tratamento baseia-se na ação de uma fonte de luz com o agente fotossensibilizador (FS) e o oxigênio molecular presente nas células, gerando espécies reativas de oxigênio que causam a morte celular. Uma das limitações atuais da técnica é a penetração da luz no tecido biológico. Entre os fotossensibilizadores mais empregados, estão os derivados de hematoporfirina, que são excitados da região do vermelho do espectro eletromagnético. Fotossensibilizadores vêm sendo desenvolvidos para iluminação com comprimentos de onda maiores, com o potencial de aumentar a profundidade de penetração e em conseqüência, o volume tecidual tratado. Outra opção para aumentar o volume tecidual de resposta utilizando derivados de hematoporfirina é a utilização de fontes de luz pulsada que, em comparação com a contínua, vem apresentado resultados significativos no estudo da TFD. Neste estudo, foi realizada a fotodegradação in vitro do fotossensibilizador comercial Photogem® (Moscou, Rússia) com tempos variando entre 0 e 40 minutos. Como fonte de luz contínua foi utilizado um laser de diodo (Eagle Heron Quantum Tech, Brasil), e como fonte de luz pulsada, foi utilizado um laser em regime de femtossegundos emitindo em 630 nm, 1 kHz, pulso < 70 fs (Ti:Sapphire Libra-S, Opera-VIS Coherent, USA). Para a coleta dos dados, foi utilizado um sistema de espectroscopia por fluorescência portátil composto por um espectrometro USB 2000, um laptop e sonda em Y para excitação e coleta da fluorescência do FS. Também foi realizada a TFD em fígados normais de ratos. Foram utilizados 18 animais, pesando entre 180 e 250g. Os animais foram divididos em 2 grupos. Ambos os grupos receberam 1,5 mg/kg de FS, e após 30 minutos foram iluminados com dose de energia de 150 J/cm2 e intensidade de 74 mW/cm2. Também foi realizado o estudo da penetração da luz utilizando macerado de figado de rato, e o mapeamento térmico durante a TFD com a fonte de luz CW e o laser pulsado. O estudo da taxa de fotodegradação do FS nos mostrou uma maior eficiência da fonte de luz pulsada para a degradação da molécula de Photogem®, enquanto que a taxa de degradação para o CW foi 6 vezes menor. O macerado mostrou que o coeficiente de penetração da luz CW e a luz pulsado são praticamente os mesmos, o que sustenta a análise com a intensidade média. O estudo in vivo mostra, através de uma análise histológica do perfil de necrose, que a fonte de luz pulsada alcança uma profundidade de necrose cerca de 2 vezes maior, em comparação com a fonte em regime contínuo, além de um melhor resultado em uma avaliação qualitativa da morfologia da região de necrose. Isto está relacionado com a alta intensidade dos pulsos emitidos pela fonte de luz pulsada com o tecido e o FS presente, promovendo o aumento na profundidade de necrose.Photodynamic therapy (PDT) is a useful technique for the treatment of cancer lesions and other diseases. The treatment is based on the interaction of light with a photosensitizer agent (PS) and with molecular oxygen that is present in cells, which generates reactive oxygen species that promote cell death. One of the limitation factors of this technique is limited light penetration in biological tissue. Hematoporphyrin derivatives are among the most used photosensitizers. They are excited on the red region of the electromagnetic spectrum. New photosensitizers has been developed for the use with longer wavelengths, potentializing the increase of penetration depth and, hence, the volume of treated tissue. Another option to increase the volume of responding tissue in PDT studies is to use pulsed light sources, which has presented satisfactory results when compared to continuous (CW) light sources. In this study, in vitro photodegradation of Photogem® (commercial photosensitizer, Moscow, Russia) was performed, during irradiation times between 0 and 40 minutes. A diode laser (Eagle Heron Quantum Tech, Brazil) was used as CW light source, and a femtosecond laser (Ti:Sapphire Libra-S, Opera-VIS Coherent, USA) emitting in 630 nm (1 kHz, < 70 fs pulse) was used as a pulsed light source. Data collection was performed using a portable fluorescence spectroscopy system, including a spectrometer USB 2000 (Ocean Optics®, Palo Alto, CA), a laptop and a Y-type optical fiber probe for PS fluorescence excitation and collection. Photodynamic response was investigated in eighteen animals, weighting between 180 g and 250 g, which were divided in two groups. Both groups received 1.5 mg/kg of body mass of PS, and after thirty minutes were irradiated with light dose of 150 J/cm2 and 74 mW/cm2 for fluence rate. Light penetration was also investigated using rat liver macerate, and thermal monitoring during PDT as well, for both pulsed and CW light sources. The photodegradation rate study allowed us to observe a greater efficiency in Photogem® molecules degradation for the pulsed light source. For the CW irradiation, the degradation rate was 6 times lower. Macerate study showed that light penetration coefficient values for CW and pulsed were similar, which corroborates with the average intensity analysis. The depth of necrosis histological analysis showed that the pulsed light source allows depth of necrosis to be about 2x deeper when compared to CW source. Additionally, the pulsed source showed a better result in the qualitative evaluation of necrotic tissue morphology. This is related to the high intensity of the pulses emitted from the pulsed light source on the photosensitized tissue, promoting an increase in depth of necrosis

    Photodynamic therapy dosimetry using multiexcitation multiemission wavelength : toward real-time prediction of treatment outcome

    No full text
    Evaluating the optical properties of biological tissues is needed to achieve accurate dosimetry during photodynamic therapy (PDT). Currently, accurate assessment of the photosensitizer (PS) concentration by fluorescence measurements during PDT is typically hindered by the lack of information about tissue optical properties. In the present work, a hand-held fiber-optic probe instrument monitoring fluorescence and reflectance is used for assessing blood volume, reduced scattering coefficient, and PS concentration facilitating accurate dosimetry for PDT. System validation was carried out on tissue phantoms using nonlinear least squares support machine regression analysis. It showed a high correlation coefficient (>0.99) in the prediction of the PS concentration upon a large variety of phantom optical properties. In vivo measurements were conducted in a PDT chlorine e6 dose escalating trial involving 36 male Swiss mice with Ehrlich solid tumors in which fluences of 5, 15, and 40 J cm - 2 were delivered at two fluence rates (100 and 40 mW cm - 2). Remarkably, quantitative measurement of fluorophore concentration was achieved in the in vivo experiment. Diffuse reflectance spectroscopy (DRS) system was also used to independently measure the physiological properties of the target tissues for result comparisons. Then, blood volume and scattering coefficient measured by the fiber-optic probe system were compared with the corresponding result measured by DRS and showed agreement. Additionally, tumor hemoglobin oxygen saturation was measured using the DRS system. Overall, the system is capable of assessing the implicit photodynamic dose to predict the PDT outcome

    Non-homogeneous liver distribution of photosensitizer and its consequence for photodynamic therapy outcome

    No full text
    Background: Photodynamic therapy is mainly used for treatment of malignant lesions, and is based on selective location of a photosensitizer in the tumor tissue, followed by light at wavelengths matching the photosensitizer absorption spectrum. In molecular oxygen presence, reactive oxygen species are generated, inducing cells to die. One of the limitations of photodynamic therapy is the variability of photosensitizer concentration observed in systemically photosensitized tissues, mainly due to differences of the tissue architecture, cell lines, and pharmacokinetics. This study aim was to demonstrate the spatial distribution of a hematoporphyrin derivative, Photogem(R), in the healthy liver tissue of Wistar rats via fluorescence spectroscopy, and to understand its implications on photodynamic response. Methods: Fifteen male Wistar rats were intravenously photosensitized with 1.5 mg/kg body weight of Photogem(R). Laser-induced fluorescence spectroscopy at 532nm-excitation was performed on ex vivo liver slices. The influence of photosensitizer surface distribution detected by fluorescence and the induced depth of necrosis were investigated in five animals. Results: Photosensitizer distribution on rat liver showed to be greatly non-homogeneous. This may affect photodynamic therapy response as shown in the results of depth of necrosis. Conclusions: As a consequence of these results, this study suggests that photosensitizer surface spatial distribution should be taken into account in photodynamic therapy dosimetry, as this will help to better predict clinical results. (C) 2010 Elsevier B.V. All rights reserved.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)FAPESP - BrazilCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)CAPES-BrazilBrazilian National Council for Scientific and Technological Development (CNPq-Brazil)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq

    Safety assessment of oral photodynamic therapy in rats

    No full text
    Photodynamic therapy (PDT) is based on the synergism of a photosensitive drug (a photosensitizer) and visible light to destroy target cells (e.g., malignant, premalignant, or bacterial cells). The aim of this study was to investigate the response of normal rat tongue mucosa to PDT following the topical application of hematoporphyrin derivative (Photogem®), Photodithazine®, methylene blue (MB), and poly(lactic-co-glycolic acid) (PLGA) nanoparticles loaded with MB. One hundred and thirty three rats were randomly divided in various groups: the PDT groups were treated with the photosensitizers for 10 min followed by exposure to red light. Those in control groups received neither photosensitizer nor light, and they were subjected to light exposure alone or to photosensitizer alone. Fluorescent signals were obtained from tongue tissue immediately after the topical application of photosensitizers and 24 h following PDT. Histological changes were evaluated at baseline and at 1, 3, 7, and 15 days post-PDT treatment. Fluorescence was detected immediately after the application of the photosensitizers, but not 24 h following PDT. Histology revealed intact mucosa in all experimental groups at all evaluation time points. The results suggest that there is a therapeutic window where PDT with Photogem®, Photodithazine®, MB, and MB-loaded PLGA nanoparticles could safely target oral pathogenic bacteria without damaging normal oral tissue.FAPES
    corecore