68 research outputs found

    Conglobation in the Pill Bug, Armadillidium vulgare, as a Water Conservation Mechanism

    Get PDF
    Water balance of the terrestrial isopod, Armadillidium vulgare, was investigated during conglobation (rolling-up behavior). Water loss and metabolic rates were measured at 18 ± 1°C in dry air using flow-through respirometry. Water-loss rates decreased 34.8% when specimens were in their conglobated form, while CO2 release decreased by 37.1%. Water loss was also measured gravimetrically at humidities ranging from 6 to 75 %RH. Conglobation was associated with a decrease in water-loss rates up to 53 %RH, but no significant differences were observed at higher humidities. Our findings suggest that conglobation behavior may help to conserve water, in addition to its demonstrated role in protection from predation

    The Rearing and Biology of the Desert Beetle, Microdera punctipennis, Under Laboratory Conditions

    Get PDF
    Microdera punctipennis Kasz (Coleoptera: Tenebrionidae) is a unique species that lives in the desert region of Central Asia and has adopted a nocturnal habit to survive the desert environment. Female adults are larger in size than male adults. The female/male ratio was 1.04:1. A rearing method using reused plastic bottles was used. The rearing conditions were 30 ± 0.5°C, 30 ± 6% relative humidity (RH), and 16:8 L:D photoperiod. Cabbage was provided as food. Cannibalism was avoided by rearing one larva in a bottle. A complete life cycle was obtained under these conditions. The viability of eggs, larvae, prepupae, pupae, and teneral adults was 93.54%, 83.71%, 84.76%, 87.64%, and 93.59%, respectively. Embryogenesis took 7.35 days on average. The larval duration in each instar was 2.25 days. The mean duration of the larvae, prepupae, pupae, and teneral adult was 49.27, 7.05, 9.95, and 10.12 days, respectively. The coloration of each developmental stage gradually changed from creamy white to light brownish or black. Females commenced oviposition when their body color became black. On average, each female produced 568 eggs

    The comparative osmoregulatory ability of two water beetle genera whose species span the fresh-hypersaline gradient in inland waters (Coleoptera: Dytiscidae, Hydrophilidae).

    Get PDF
    A better knowledge of the physiological basis of salinity tolerance is essential to understanding the ecology and evolutionary history of organisms that have colonized inland saline waters. Coleoptera are amongst the most diverse macroinvertebrates in inland waters, including saline habitats; however, the osmoregulatory strategies they employ to deal with osmotic stress remain unexplored. Survival and haemolymph osmotic concentration at different salinities were examined in adults of eight aquatic beetle species which inhabit different parts of the fresh-hypersaline gradient. Studied species belong to two unrelated genera which have invaded saline waters independently from freshwater ancestors; Nebrioporus (Dytiscidae) and Enochrus (Hydrophilidae). Their osmoregulatory strategy (osmoconformity or osmoregulation) was identified and osmotic capacity (the osmotic gradient between the animal's haemolymph and the external medium) was compared between species pairs co-habiting similar salinities in nature. We show that osmoregulatory capacity, rather than osmoconformity, has evolved independently in these different lineages. All species hyperegulated their haemolymph osmotic concentration in diluted waters; those living in fresh or low-salinity waters were unable to hyporegulate and survive in hyperosmotic media (> 340 mosmol kg(-1)). In contrast, the species which inhabit the hypo-hypersaline habitats were effective hyporegulators, maintaining their haemolymph osmolality within narrow limits (ca. 300 mosmol kg(-1)) across a wide range of external concentrations. The hypersaline species N. ceresyi and E. jesusarribasi tolerated conductivities up to 140 and 180 mS cm(-1), respectively, and maintained osmotic gradients over 3500 mosmol kg(-1), comparable to those of the most effective insect osmoregulators known to date. Syntopic species of both genera showed similar osmotic capacities and in general, osmotic responses correlated well with upper salinity levels occupied by individual species in nature. Therefore, osmoregulatory capacity may mediate habitat segregation amongst congeners across the salinity gradient
    • …
    corecore