26 research outputs found
Expert Panel Recommendations on Lower Urinary Tract Health of Women Across Their Life Span
Urologic and kidney problems are common in women across their life span and affect their daily life, including physical activity, sexual relations, social life, and future health. Urological health in women is still understudied and the underlying mechanisms of female urological dysfunctions are not fully understood. The Society for Women's Health Research (SWHR?) recognized the need to have a roundtable discussion where researchers and clinicians would define the current state of knowledge, gaps, and recommendations for future research directions to transform women's urological health. This report summarizes the discussions, which focused on epidemiology, clinical presentation, basic science, prevention strategies, and efficacy of current therapies. Experts around the table agreed on a set of research, education, and policy recommendations that have the potential to dramatically increase awareness and improve women's urological health at all stages of life.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/140146/1/jwh.2016.5895.pd
Sex differences in lower urinary tract biology and physiology
Abstract
Females and males differ significantly in gross anatomy and physiology of the lower urinary tract, and these differences are commonly discussed in the medical and scientific literature. However, less attention is dedicated to investigating the varied development, function, and biology between females and males on a cellular level. Recognizing that cell biology is not uniform, especially in the lower urinary tract of females and males, is crucial for providing context and relevance for diverse fields of biomedical investigation. This review serves to characterize the current understanding of biological sex differences between female and male lower urinary tracts, while identifying areas for future research. First, the differences in overall cell populations are discussed in the detrusor smooth muscle, urothelium, and trigone. Second, the urethra is discussed, including anatomic discussions of the female and male urethra followed by discussions of cellular differences in the urothelial and muscular layers. The pelvic floor is then reviewed, followed by an examination of the sex differences in hormonal regulation, the urinary tract microbiome, and the reticuloendothelial system. Understanding the complex and dynamic development, anatomy, and physiology of the lower urinary tract should be contextualized by the sex differences described in this review
X-ray crystal structure and properties of phanta, a weakly fluorescent photochromic GFP-like protein
Phanta is a reversibly photoswitching chromoprotein (Phi(F), 0.003), useful for pcFRET, that was isolated from a mutagenesis screen of the bright green fluorescent eCGP123 (Phi(F), 0.8). We have investigated the contribution of substitutions at positions His193, Thr69 and Gln62, individually and in combination, to the optical properties of Phanta. Single amino acid substitutions at position 193 resulted in proteins with very low Phi(F), indicating the importance of this position in controlling the fluorescence efficiency of the variant proteins. The substitution Thr69Val in Phanta was important for supressing the formation of a protonated chromophore species observed in some His193 substituted variants, whereas the substitution Gln62Met did not significantly contribute to the useful optical properties of Phanta. X-ray crystal structures for Phanta (2.3 angstrom), eCGP123(T69V) (2.0 angstrom) and eCGP123(H193Q) (2.2 angstrom) in their non-photoswitched state were determined, revealing the presence of a cis-coplanar chromophore. We conclude that changes in the hydrogen-bonding network supporting the cis-chromophore, and its contacts with the surrounding protein matrix, are responsible for the low fluorescence emission of eCGP123 variants containing a His193 substitution
Optical spectra of Phanta and selected variants.
<p>(A) Spectra determined at pH 8.0 are shown for Phanta and variants of eCGP123 containing amino acid substitutions that contribute to Phanta. Absorbance (solid line), fluorescence excitation (dashed line) and fluorescence emission (dotted line) are shown. (B) The absorbance spectra are shown for selected variants at pH 8.0 (solid line), pH 6.0 (dashed line) and pH 3.0 (dotted line). (C) Absorbance spectra determined at pH 8.0 are shown for variants of eCGP123 singly substituted at position 193 or doubly substituted at positions 193 and 69.</p
Phanta, eCGP123<sup>T69V</sup> and eCGP123<sup>H193Q</sup> data collection and refinement statistics.
<p><sup>a</sup> Values in parentheses refer to the highest resolution shell.</p><p><sup>b</sup><i>R</i>free was calculated with 5% of the diffraction data selected randomly and excluded from refinement.</p><p>Phanta, eCGP123<sup>T69V</sup> and eCGP123<sup>H193Q</sup> data collection and refinement statistics.</p