41 research outputs found

    Taphonomic and Sedimentologic Study of the Cretaceous Tepee Buttes Limestone

    Get PDF
    The Tepee Buttes methane seep deposits exist today as topographically defined limestone features in the surrounding Pierre Shale of the Campanian Western Interior Seaway. The present sloping surface has previously been assumed to be indicative of original seep structure, and biofacies were interpreted as roughly ringing a central vent core. Contradictory field observations in this study have prompted a more detailed taphonomic approach to the Tepee Buttes limestone, and certain depositional features such as reworked horizontal shell beds were noted and examined in detail for the first time. The results of a taphonomic and sedimentologic analysis reveal a complex history of reworking that likely involved current action and bioturbation by burrowing seep fauna. We found no clear evidence for deposition along a sloping surface as inclined as today, and buttes are interpreted as having low/uneven original relief

    Diet of the prehistoric population of Rapa Nui (Easter Island, Chile) shows environmental adaptation and resilience

    Get PDF
    Objectives: The Rapa Nui “ecocide” narrative questions whether the prehistoric population caused an avoidable ecological disaster through rapid deforestation and over-exploitation of natural resources. The objective of this study was to characterize prehistoric human diets to shed light on human adaptability and land use in an island environment with limited resources. Materials and methods: Materials for this study included human, faunal, and botanical remains from the archaeological sites Anakena and Ahu Tepeu on Rapa Nui, dating from c. 1400 AD to the historic period, and modern reference material. We used bulk carbon and nitrogen isotope analy- ses and amino acid compound specific isotope analyses (AA-CSIA) of collagen isolated from prehistoric human and faunal bone, to assess the use of marine versus terrestrial resources and to investigate the underlying baseline values. Similar isotope analyses of archaeological and modern botanical and marine samples were used to characterize the local environment. Results: Results of carbon and nitrogen AA-CSIA independently show that around half the protein in diets from the humans measured came from marine sources; markedly higher than previous estimates. We also observed higher d15N values in human collagen than could be expected from the local environment. Discussion: Our results suggest highly elevated d15N values could only have come from consump- tion of crops grown in substantially manipulated soils. These findings strongly suggest that the prehistoric population adapted and exhibited astute environmental awareness in a harsh environ- ment with nutrient poor soils. Our results also have implications for evaluating marine reservoir corrections of radiocarbon dates

    Mercury Cycling in the North Pacific Subtropical Gyre as Revealed by Mercury Stable Isotope Ratios

    Get PDF
    The oceans are an important global reservoir for mercury (Hg), and marine fish consumption is the dominant human exposure pathway for its toxic methylated form. A more thorough understanding of the global biogeochemical cycle of Hg requires additional information on the mechanisms that control Hg cycling in pelagic marine waters. In this study, Hg isotope ratios and total Hg concentrations are used to explore Hg biogeochemistry in oligotrophic marine environments north of Hawaii. We present the first measurements of the vertical water column distribution of Hg concentrations and the Hg isotopic composition in precipitation, marine particles, and zooplankton near Station ALOHA (22°45′N, 158°W). Our results reveal production and demethylation of methylmercury in both the euphotic (0–175 m) and mesopelagic zones (200–1,000 m). We document a strong relationship between Hg isotopic composition and depth in particles, zooplankton, and fish in the water column and diurnal variations in Δ199Hg values in zooplankton sampled near the surface (25 m). Based on these observations and stable Hg isotope relationships in the marine food web, we suggest that the Hg found in large pelagic fish at Station ALOHA was originally deposited largely by precipitation, transformed into methyl‐Hg, and bioaccumulated in situ in the water column. Our results highlight how Hg isotopic compositions reflect abiotic and biotic production and degradation of methyl‐Hg throughout the water column and the importance of particles and zooplankton in the vertical transport of Hg

    Mercury Cycling in the North Pacific Subtropical Gyre as Revealed by Mercury Stable Isotope Ratios

    Full text link
    The oceans are an important global reservoir for mercury (Hg), and marine fish consumption is the dominant human exposure pathway for its toxic methylated form. A more thorough understanding of the global biogeochemical cycle of Hg requires additional information on the mechanisms that control Hg cycling in pelagic marine waters. In this study, Hg isotope ratios and total Hg concentrations are used to explore Hg biogeochemistry in oligotrophic marine environments north of Hawaii. We present the first measurements of the vertical water column distribution of Hg concentrations and the Hg isotopic composition in precipitation, marine particles, and zooplankton near Station ALOHA (22°45â ²N, 158°W). Our results reveal production and demethylation of methylmercury in both the euphotic (0â 175 m) and mesopelagic zones (200â 1,000 m). We document a strong relationship between Hg isotopic composition and depth in particles, zooplankton, and fish in the water column and diurnal variations in Î 199Hg values in zooplankton sampled near the surface (25 m). Based on these observations and stable Hg isotope relationships in the marine food web, we suggest that the Hg found in large pelagic fish at Station ALOHA was originally deposited largely by precipitation, transformed into methylâ Hg, and bioaccumulated in situ in the water column. Our results highlight how Hg isotopic compositions reflect abiotic and biotic production and degradation of methylâ Hg throughout the water column and the importance of particles and zooplankton in the vertical transport of Hg.Key PointsMMHg bioaccumulated in fish is derived primarily from Hg (II) deposited in atmospheric precipitationMarine particles host the majority of Hg available for production of MMHg in the open oceanMethylation and demethylation of Hg occurs throughout the euphotic and mesopelagic zones in the North Pacific Subtropical GyrePeer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/150543/1/gbc20883.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/150543/2/gbc20883_am.pd

    EXPORTS Measurements and Protocols for the NE Pacific Campaign

    Get PDF
    EXport Processes in the Ocean from Remote Sensing (EXPORTS) is a large-scale NASA-led and NSF co-funded field campaign that will provide critical information for quantifying the export and fate of upper ocean net primary production (NPP) using satellite information and state of the art technology

    Size fractionated zooplankton C:N, d13C, and d15N from the EXPORTS cruise on R/V Roger Revelle (RR1813) during August and September 2018

    No full text
    Dataset: Size Fractionated Zooplankton Carbon and NitrogenSize fractionated zooplankton C:N, d13C, and d15N from the EXPORTS cruise on R/V Roger Revelle (RR1813) during August and September 2018. Zooplankton were collected using a multiple opening-closing net and environmental sensing system (MOCNESS). For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/772776NSF Division of Ocean Sciences (NSF OCE) OCE-1830016, NSF Division of Ocean Sciences (NSF OCE) OCE-182942

    Size fractionated zooplankton d13C and d15N of individual amino acids from EXPORTS cruise RR1813 in August 2018

    No full text
    Dataset: Zooplankton d13C and d15N of individual amino acidsThis dataset reports the size fractionated zooplankton d13C and d15N of individual amino acids from samples collected on the EXPORTS cruise (RR1813) in August 2018. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/868193NSF Division of Ocean Sciences (NSF OCE) OCE-1830016, NSF Division of Ocean Sciences (NSF OCE) OCE-182942
    corecore