83 research outputs found
Negative virial coefficients and the dominance of loose packed diagrams for D-dimensional hard spheres
We study the virial coefficients B_k of hard spheres in D dimensions by means
of Monte-Carlo integration. We find that B_5 is positive in all dimensions but
that B_6 is negative for all D >= 6. For 7<=k<=17 we compute sets of Ree-Hoover
diagrams and find that either for large D or large k the dominant diagrams are
"loose packed". We use these results to study the radius of convergence and the
validity of the many approximations used for the equations of state for hard
spheres.Comment: 26 pages, 69 figures. Some typos corrected. Final version, to appear
in the Journal of Statistical Physic
New results for virial coefficients of hard spheres in D dimensions
We present new results for the virial coefficients B_k with k <= 10 for hard
spheres in dimensions D=2,...,8.Comment: 10 pages, 5 figures, to appear in conference proceedings of STATPHYS
2004 in Pramana - Journal of Physic
A new transfer-matrix algorithm for exact enumerations: Self-avoiding polygons on the square lattice
We present a new and more efficient implementation of transfer-matrix methods
for exact enumerations of lattice objects. The new method is illustrated by an
application to the enumeration of self-avoiding polygons on the square lattice.
A detailed comparison with the previous best algorithm shows significant
improvement in the running time of the algorithm. The new algorithm is used to
extend the enumeration of polygons to length 130 from the previous record of
110.Comment: 17 pages, 8 figures, IoP style file
Transforming fixed-length self-avoiding walks into radial SLE_8/3
We conjecture a relationship between the scaling limit of the fixed-length
ensemble of self-avoiding walks in the upper half plane and radial SLE with
kappa=8/3 in this half plane from 0 to i. The relationship is that if we take a
curve from the fixed-length scaling limit of the SAW, weight it by a suitable
power of the distance to the endpoint of the curve and then apply the conformal
map of the half plane that takes the endpoint to i, then we get the same
probability measure on curves as radial SLE. In addition to a non-rigorous
derivation of this conjecture, we support it with Monte Carlo simulations of
the SAW. Using the conjectured relationship between the SAW and radial SLE, our
simulations give estimates for both the interior and boundary scaling
exponents. The values we obtain are within a few hundredths of a percent of the
conjectured values
Ninth and Tenth Order Virial Coefficients for Hard Spheres in D Dimensions
We evaluate the virial coefficients B_k for k<=10 for hard spheres in
dimensions D=2,...,8. Virial coefficients with k even are found to be negative
when D>=5. This provides strong evidence that the leading singularity for the
virial series lies away from the positive real axis when D>=5. Further analysis
provides evidence that negative virial coefficients will be seen for some k>10
for D=4, and there is a distinct possibility that negative virial coefficients
will also eventually occur for D=3.Comment: 33 pages, 12 figure
Knotting probabilities after a local strand passage in unknotted self-avoiding polygons
We investigate the knotting probability after a local strand passage is
performed in an unknotted self-avoiding polygon on the simple cubic lattice. We
assume that two polygon segments have already been brought close together for
the purpose of performing a strand passage, and model this using Theta-SAPs,
polygons that contain the pattern Theta at a fixed location. It is proved that
the number of n-edge Theta-SAPs grows exponentially (with n) at the same rate
as the total number of n-edge unknotted self-avoiding polygons, and that the
same holds for subsets of n-edge Theta-SAPs that yield a specific
after-strand-passage knot-type. Thus the probability of a given
after-strand-passage knot-type does not grow (or decay) exponentially with n,
and we conjecture that instead it approaches a knot-type dependent amplitude
ratio lying strictly between 0 and 1. This is supported by critical exponent
estimates obtained from a new maximum likelihood method for Theta-SAPs that are
generated by a composite (aka multiple) Markov Chain Monte Carlo BFACF
algorithm. We also give strong numerical evidence that the after-strand-passage
knotting probability depends on the local structure around the strand passage
site. Considering both the local structure and the crossing-sign at the strand
passage site, we observe that the more "compact" the local structure, the less
likely the after-strand-passage polygon is to be knotted. This trend is
consistent with results from other strand-passage models, however, we are the
first to note the influence of the crossing-sign information. Two measures of
"compactness" are used: the size of a smallest polygon that contains the
structure and the structure's "opening" angle. The opening angle definition is
consistent with one that is measurable from single molecule DNA experiments.Comment: 31 pages, 12 figures, submitted to Journal of Physics
Numerical study of linear and circular model DNA chains confined in a slit: metric and topological properties
Advanced Monte Carlo simulations are used to study the effect of nano-slit
confinement on metric and topological properties of model DNA chains. We
consider both linear and circularised chains with contour lengths in the
1.2--4.8 m range and slits widths spanning continuously the 50--1250nm
range. The metric scaling predicted by de Gennes' blob model is shown to hold
for both linear and circularised DNA up to the strongest levels of confinement.
More notably, the topological properties of the circularised DNA molecules have
two major differences compared to three-dimensional confinement. First, the
overall knotting probability is non-monotonic for increasing confinement and
can be largely enhanced or suppressed compared to the bulk case by simply
varying the slit width. Secondly, the knot population consists of knots that
are far simpler than for three-dimensional confinement. The results suggest
that nano-slits could be used in nano-fluidic setups to produce DNA rings
having simple topologies (including the unknot) or to separate heterogeneous
ensembles of DNA rings by knot type.Comment: 12 pages, 10 figure
- …