83 research outputs found

    Negative virial coefficients and the dominance of loose packed diagrams for D-dimensional hard spheres

    Full text link
    We study the virial coefficients B_k of hard spheres in D dimensions by means of Monte-Carlo integration. We find that B_5 is positive in all dimensions but that B_6 is negative for all D >= 6. For 7<=k<=17 we compute sets of Ree-Hoover diagrams and find that either for large D or large k the dominant diagrams are "loose packed". We use these results to study the radius of convergence and the validity of the many approximations used for the equations of state for hard spheres.Comment: 26 pages, 69 figures. Some typos corrected. Final version, to appear in the Journal of Statistical Physic

    New results for virial coefficients of hard spheres in D dimensions

    Full text link
    We present new results for the virial coefficients B_k with k <= 10 for hard spheres in dimensions D=2,...,8.Comment: 10 pages, 5 figures, to appear in conference proceedings of STATPHYS 2004 in Pramana - Journal of Physic

    A new transfer-matrix algorithm for exact enumerations: Self-avoiding polygons on the square lattice

    Full text link
    We present a new and more efficient implementation of transfer-matrix methods for exact enumerations of lattice objects. The new method is illustrated by an application to the enumeration of self-avoiding polygons on the square lattice. A detailed comparison with the previous best algorithm shows significant improvement in the running time of the algorithm. The new algorithm is used to extend the enumeration of polygons to length 130 from the previous record of 110.Comment: 17 pages, 8 figures, IoP style file

    Transforming fixed-length self-avoiding walks into radial SLE_8/3

    Full text link
    We conjecture a relationship between the scaling limit of the fixed-length ensemble of self-avoiding walks in the upper half plane and radial SLE with kappa=8/3 in this half plane from 0 to i. The relationship is that if we take a curve from the fixed-length scaling limit of the SAW, weight it by a suitable power of the distance to the endpoint of the curve and then apply the conformal map of the half plane that takes the endpoint to i, then we get the same probability measure on curves as radial SLE. In addition to a non-rigorous derivation of this conjecture, we support it with Monte Carlo simulations of the SAW. Using the conjectured relationship between the SAW and radial SLE, our simulations give estimates for both the interior and boundary scaling exponents. The values we obtain are within a few hundredths of a percent of the conjectured values

    Ninth and Tenth Order Virial Coefficients for Hard Spheres in D Dimensions

    Full text link
    We evaluate the virial coefficients B_k for k<=10 for hard spheres in dimensions D=2,...,8. Virial coefficients with k even are found to be negative when D>=5. This provides strong evidence that the leading singularity for the virial series lies away from the positive real axis when D>=5. Further analysis provides evidence that negative virial coefficients will be seen for some k>10 for D=4, and there is a distinct possibility that negative virial coefficients will also eventually occur for D=3.Comment: 33 pages, 12 figure

    Knotting probabilities after a local strand passage in unknotted self-avoiding polygons

    Full text link
    We investigate the knotting probability after a local strand passage is performed in an unknotted self-avoiding polygon on the simple cubic lattice. We assume that two polygon segments have already been brought close together for the purpose of performing a strand passage, and model this using Theta-SAPs, polygons that contain the pattern Theta at a fixed location. It is proved that the number of n-edge Theta-SAPs grows exponentially (with n) at the same rate as the total number of n-edge unknotted self-avoiding polygons, and that the same holds for subsets of n-edge Theta-SAPs that yield a specific after-strand-passage knot-type. Thus the probability of a given after-strand-passage knot-type does not grow (or decay) exponentially with n, and we conjecture that instead it approaches a knot-type dependent amplitude ratio lying strictly between 0 and 1. This is supported by critical exponent estimates obtained from a new maximum likelihood method for Theta-SAPs that are generated by a composite (aka multiple) Markov Chain Monte Carlo BFACF algorithm. We also give strong numerical evidence that the after-strand-passage knotting probability depends on the local structure around the strand passage site. Considering both the local structure and the crossing-sign at the strand passage site, we observe that the more "compact" the local structure, the less likely the after-strand-passage polygon is to be knotted. This trend is consistent with results from other strand-passage models, however, we are the first to note the influence of the crossing-sign information. Two measures of "compactness" are used: the size of a smallest polygon that contains the structure and the structure's "opening" angle. The opening angle definition is consistent with one that is measurable from single molecule DNA experiments.Comment: 31 pages, 12 figures, submitted to Journal of Physics

    Numerical study of linear and circular model DNA chains confined in a slit: metric and topological properties

    Full text link
    Advanced Monte Carlo simulations are used to study the effect of nano-slit confinement on metric and topological properties of model DNA chains. We consider both linear and circularised chains with contour lengths in the 1.2--4.8 ÎĽ\mum range and slits widths spanning continuously the 50--1250nm range. The metric scaling predicted by de Gennes' blob model is shown to hold for both linear and circularised DNA up to the strongest levels of confinement. More notably, the topological properties of the circularised DNA molecules have two major differences compared to three-dimensional confinement. First, the overall knotting probability is non-monotonic for increasing confinement and can be largely enhanced or suppressed compared to the bulk case by simply varying the slit width. Secondly, the knot population consists of knots that are far simpler than for three-dimensional confinement. The results suggest that nano-slits could be used in nano-fluidic setups to produce DNA rings having simple topologies (including the unknot) or to separate heterogeneous ensembles of DNA rings by knot type.Comment: 12 pages, 10 figure

    High-precision estimate of the hydrodynamic radius for self-avoiding walks

    No full text
    • …
    corecore