48 research outputs found

    The future of coastal and estuarine modeling: Findings from a workshop

    Get PDF
    This paper summarizes the findings of a workshop convened in the United States in 2018 to discuss methods in coastal and estuarine modeling and to propose key areas of research and development needed to improve their accuracy and reliability. The focus of this paper is on physical processes, and we provide an overview of the current state-of-the-art based on presentations and discussions at the meeting, which revolved around the four primary themes of parameterizations, numerical methods, in-situ and remote-sensing measurements,and high-performance computing. A primary outcome of the workshop was agreement on the need to reduce subjectivity and improve reproducibility in modeling of physical processes in the coastal ocean. Reduction of subjectivity can be accomplished through development of standards for benchmarks, grid generation, and validation, and reproducibility can be improved through development of standards for input/output, coupling and model nesting, and reporting. Subjectivity can also be reduced through more engagement with the applied mathematics and computer science communities to develop methods for robust parameter estimation anduncertainty quantification. Such engagement could be encouraged through more collaboration between thef orward and inverse modeling communities and integration of more applied math and computer science into oceanography curricula. Another outcome of the workshop was agreement on the need to develop high-resolution models that scale on advanced HPC systems to resolve, rather than parameterize, processes with horizontal scales that range between the depth and the internal Rossby deformation scale. Unsurprisingly,more research is needed on parameterizations of processes at scales smaller than the depth, includingparameterizations for drag (including bottom roughness, bedforms, vegetation and corals), wave breaking, and air–sea interactions under strong wind conditions. Other topics that require significantly more work to better parameterize include nearshore wave modeling, sediment transport modeling, and morphodynamics. Finally, it was agreed that coastal models should be considered as key infrastructure needed to support research, just like laboratory facilities, field instrumentation, and research vessels. This will require a shift in the way proposals related to coastal ocean modeling are reviewed and funded

    Over what area did the oil and gas spread during the 2010 Deepwater Horizon oil spill?

    Get PDF
    Author Posting. © The Oceanography Society, 2016. This article is posted here by permission of The Oceanography Society for personal use, not for redistribution. The definitive version was published in Oceanography 29, no. 3 (2016): 96–107, doi:10.5670/oceanog.2016.74.The 2010 Deepwater Horizon (DWH) oil spill in the Gulf of Mexico resulted in the collection of a vast amount of situ and remotely sensed data that can be used to determine the spatiotemporal extent of the oil spill and test advances in oil spill models, verifying their utility for future operational use. This article summarizes observations of hydrocarbon dispersion collected at the surface and at depth and our current understanding of the factors that affect the dispersion, as well as our improved ability to model and predict oil and gas transport. As a direct result of studying the area where oil and gas spread during the DWH oil spill, our forecasting capabilities have been greatly enhanced. State-of-the-art oil spill models now include the ability to simulate the rise of a buoyant plume of oil from sources at the seabed to the surface. A number of efforts have focused on improving our understanding of the influences of the near-surface oceanic layer and the atmospheric boundary layer on oil spill dispersion, including the effects of waves. In the future, oil spill modeling routines will likely be included in Earth system modeling environments, which will link physical models (hydrodynamic, surface wave, and atmospheric) with marine sediment and biogeochemical components.This research was made possible by a grant from BP/The Gulf of Mexico Research Initiative to the CARTHE and Deep-C Consortia, and by contract M12PC00003 from the Bureau of Ocean Energy Management (BOEM)

    Immunomodulation with Recombinant Interferon-Îł1b in Pulmonary Tuberculosis

    Get PDF
    BACKGROUND:Current treatment regimens for pulmonary tuberculosis require at least 6 months of therapy. Immune adjuvant therapy with recombinant interferon-gamma1b (rIFN-gammab) may reduce pulmonary inflammation and reduce the period of infectivity by promoting earlier sputum clearance. METHODOLOGY/PRINCIPAL FINDINGS:We performed a randomized, controlled clinical trial of directly observed therapy (DOTS) versus DOTS supplemented with nebulized or subcutaneously administered rIFN-gamma1b over 4 months to 89 patients with cavitary pulmonary tuberculosis. Bronchoalveolar lavage (BAL) and blood were sampled at 0 and 4 months. There was a significant decline in levels of inflammatory cytokines IL-1beta, IL-6, IL-8, and IL-10 in 24-hour BAL supernatants only in the nebulized rIFN-gamma1b group from baseline to week 16. Both rIFN-gamma1b groups showed significant 3-fold increases in CD4+ lymphocyte response to PPD at 4 weeks. There was a significant (p = 0.03) difference in the rate of clearance of Mtb from the sputum smear at 4 weeks for the nebulized rIFN-gamma1b adjuvant group compared to DOTS or DOTS with subcutaneous rIFN-gamma1b. In addition, there was significant reduction in the prevalence of fever, wheeze, and night sweats at 4 weeks among patients receiving rFN-gamma1b versus DOTS alone. CONCLUSION:Recombinant interferon-gamma1b adjuvant therapy plus DOTS in cavitary pulmonary tuberculosis can reduce inflammatory cytokines at the site of disease, improve clearance of Mtb from the sputum, and improve constitutional symptoms. TRIAL REGISTRATION:ClinicalTrials.gov NCT00201123

    Towards an end-to-end analysis and prediction system for weather, climate, and marine applications in the Red Sea

    Get PDF
    Author Posting. © American Meteorological Society, 2021. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Bulletin of the American Meteorological Society 102(1), (2021): E99-E122, https://doi.org/10.1175/BAMS-D-19-0005.1.The Red Sea, home to the second-longest coral reef system in the world, is a vital resource for the Kingdom of Saudi Arabia. The Red Sea provides 90% of the Kingdom’s potable water by desalinization, supporting tourism, shipping, aquaculture, and fishing industries, which together contribute about 10%–20% of the country’s GDP. All these activities, and those elsewhere in the Red Sea region, critically depend on oceanic and atmospheric conditions. At a time of mega-development projects along the Red Sea coast, and global warming, authorities are working on optimizing the harnessing of environmental resources, including renewable energy and rainwater harvesting. All these require high-resolution weather and climate information. Toward this end, we have undertaken a multipronged research and development activity in which we are developing an integrated data-driven regional coupled modeling system. The telescopically nested components include 5-km- to 600-m-resolution atmospheric models to address weather and climate challenges, 4-km- to 50-m-resolution ocean models with regional and coastal configurations to simulate and predict the general and mesoscale circulation, 4-km- to 100-m-resolution ecosystem models to simulate the biogeochemistry, and 1-km- to 50-m-resolution wave models. In addition, a complementary probabilistic transport modeling system predicts dispersion of contaminant plumes, oil spill, and marine ecosystem connectivity. Advanced ensemble data assimilation capabilities have also been implemented for accurate forecasting. Resulting achievements include significant advancement in our understanding of the regional circulation and its connection to the global climate, development, and validation of long-term Red Sea regional atmospheric–oceanic–wave reanalyses and forecasting capacities. These products are being extensively used by academia, government, and industry in various weather and marine studies and operations, environmental policies, renewable energy applications, impact assessment, flood forecasting, and more.The development of the Red Sea modeling system is being supported by the Virtual Red Sea Initiative and the Competitive Research Grants (CRG) program from the Office of Sponsored Research at KAUST, Saudi Aramco Company through the Saudi ARAMCO Marine Environmental Center at KAUST, and by funds from KAEC, NEOM, and RSP through Beacon Development Company at KAUST
    corecore