934 research outputs found

    Unintentional diethylene glycol poisoning following the consumption of a shared alcoholic beverage

    Get PDF
    Diethylene glycol (DEG) is an uncommon cause of toxic alcohol poisoning. In the past, its ingestion in contaminated pharmaceutical products has resulted in mass outbreaks. We describe two isolated cases of unintentional DEG poisoning following the consumption of a shared alcoholic beverage and highlight the challenges that were confronted during the diagnostic work-up and management. Despite appropriate therapy, both cases had fatal outcomes, which emphasises the importance of early recognition of the condition and of instituting specific treatment

    A Deep Learning Approach for Gait Event Detection from a Single Shank-Worn IMU: Validation in Healthy and Neurological Cohorts

    Get PDF
    Many algorithms use 3D accelerometer and/or gyroscope data from inertial measurement unit (IMU) sensors to detect gait events (i.e., initial and final foot contact). However, these algorithms often require knowledge about sensor orientation and use empirically derived thresholds. As alignment cannot always be controlled for in ambulatory assessments, methods are needed that require little knowledge on sensor location and orientation, e.g., a convolutional neural network-based deep learning model. Therefore, 157 participants from healthy and neurologically diseased cohorts walked 5 m distances at slow, preferred, and fast walking speed, while data were collected from IMUs on the left and right ankle and shank. Gait events were detected and stride parameters were extracted using a deep learning model and an optoelectronic motion capture (OMC) system for reference. The deep learning model consisted of convolutional layers using dilated convolutions, followed by two independent fully connected layers to predict whether a time step corresponded to the event of initial contact (IC) or final contact (FC), respectively. Results showed a high detection rate for both initial and final contacts across sensor locations (recall ≥92%, precision ≥97%). Time agreement was excellent as witnessed from the median time error (0.005 s) and corresponding inter-quartile range (0.020 s). The extracted stride-specific parameters were in good agreement with parameters derived from the OMC system (maximum mean difference 0.003 s and corresponding maximum limits of agreement (-0.049 s, 0.051 s) for a 95% confidence level). Thus, the deep learning approach was considered a valid approach for detecting gait events and extracting stride-specific parameters with little knowledge on exact IMU location and orientation in conditions with and without walking pathologies due to neurological diseases

    Active Magnetoelectric Motion Sensing: Examining Performance Metrics with an Experimental Setup

    Get PDF
    Magnetoelectric (ME) sensors with a form factor of a few millimeters offer a comparatively low magnetic noise density of a few pT/Hz−−−√ in a narrow frequency band near the first bending mode. While a high resonance frequency (kHz range) and limited bandwidth present a challenge to biomagnetic measurements, they can potentially be exploited in indirect sensing of non-magnetic quantities, where artificial magnetic sources are applicable. In this paper, we present the novel concept of an active magnetic motion sensing system optimized for ME sensors. Based on the signal chain, we investigated and quantified key drivers of the signal-to-noise ratio (SNR), which is closely related to sensor noise and bandwidth. These considerations were demonstrated by corresponding measurements in a simplified one-dimensional motion setup. Accordingly, we introduced a customized filter structure that enables a flexible bandwidth selection as well as a frequency-based separation of multiple artificial sources. Both design goals target the prospective application of ME sensors in medical movement analysis, where a multitude of distributed sensors and sources might be applied

    Changes in Coordination and Its Variability with an Increase in Functional Performance of the Lower Extremities

    Get PDF
    Clinical gait analysis has a long-standing tradition in biomechanics. However, the use of kinematic data or segment coordination has not been reported based on wearable sensors in “real-life” environments. In this work, the skeletal kinematics of 21 healthy and 24 neurogeriatric participants was collected in a magnetically disturbed environment with inertial measurement units (IMUs) using an accelerometer-based functional calibration method. The system consists of seven IMUs attached to the lower back, the thighs, the shanks, and the feet to acquire and process the raw sensor data. The Short Physical Performance Battery (SPPB) test was performed to relate joint kinematics and segment coordination to the overall SPPB score. Participants were then divided into three subgroups based on low (0–6), moderate (7–9), or high (10–12) SPPB scores. The main finding of this study is that most IMU-based parameters significantly correlated with the SPPB score and the parameters significantly differed between the SPPB subgroups. Lower limb range of motion and joint segment coordination correlated positively with the SPPB score, and the segment coordination variability correlated negatively. The results suggest that segment coordination impairments become more pronounced with a decreasing SPPB score, indicating that participants with low overall SPPB scores produce a peculiar inconsistent walking pattern to counteract lower extremity impairment in strength, balance, and mobility. Our findings confirm the usefulness of SPPB through objectively measured parameters, which may be relevant for the design of future studies and clinical routines

    Validation of IMU-based gait event detection during curved walking and turning in older adults and Parkinson's Disease patients

    Get PDF
    Background Identification of individual gait events is essential for clinical gait analysis, because it can be used for diagnostic purposes or tracking disease progression in neurological diseases such as Parkinson's disease. Previous research has shown that gait events can be detected from a shank-mounted inertial measurement unit (IMU), however detection performance was often evaluated only from straight-line walking. For use in daily life, the detection performance needs to be evaluated in curved walking and turning as well as in single-task and dual-task conditions. Methods Participants (older adults, people with Parkinson's disease, or people who had suffered from a stroke) performed three different walking trials: (1) straight-line walking, (2) slalom walking, (3) Stroop-and-walk trial. An optical motion capture system was used a reference system. Markers were attached to the heel and toe regions of the shoe, and participants wore IMUs on the lateral sides of both shanks. The angular velocity of the shank IMUs was used to detect instances of initial foot contact (IC) and final foot contact (FC), which were compared to reference values obtained from the marker trajectories. Results The detection method showed high recall, precision and F1 scores in different populations for both initial contacts and final contacts during straight-line walking (IC: recall [Formula: see text] 100%, precision [Formula: see text] 100%, F1 score [Formula: see text] 100%; FC: recall [Formula: see text] 100%, precision [Formula: see text] 100%, F1 score [Formula: see text] 100%), slalom walking (IC: recall [Formula: see text] 100%, precision [Formula: see text] 99%, F1 score [Formula: see text]100%; FC: recall [Formula: see text] 100%, precision [Formula: see text] 99%, F1 score [Formula: see text]100%), and turning (IC: recall [Formula: see text] 85%, precision [Formula: see text] 95%, F1 score [Formula: see text]91%; FC: recall [Formula: see text] 84%, precision [Formula: see text] 95%, F1 score [Formula: see text]89%). Conclusions Shank-mounted IMUs can be used to detect gait events during straight-line walking, slalom walking and turning. However, more false events were observed during turning and more events were missed during turning. For use in daily life we recommend identifying turning before extracting temporal gait parameters from identified gait events

    Cognitive dual-task cost depends on the complexity of the cognitive task, but not on age and disease

    Get PDF
    Introduction Dual-tasking (DT) while walking is common in daily life and can affect both gait and cognitive performance depending on age, attention prioritization, task complexity and medical condition. The aim of the present study was to investigate the effects of DT on cognitive DT cost (DTC) (i) in a dataset including participants of different age groups, with different neurological disorders and chronic low-back pain (cLBP) (ii) at different levels of cognitive task complexity, and (iii) in the context of a setting relevant to daily life, such as combined straight walking and turning. Materials and methods Ninety-one participants including healthy younger and older participants and patients with Parkinson's disease, Multiple Sclerosis, Stroke and cLBP performed a simple reaction time (SRT) task and three numerical Stroop tasks under the conditions congruent (StC), neutral (StN) and incongruent (StI). The tasks were performed both standing (single task, ST) and walking (DT), and DTC was calculated. Mixed ANOVAs were used to determine the effect of group and task complexity on cognitive DTC. Results A longer response time in DT than in ST was observed during SRT. However, the response time was shorter in DT during StI. DTC decreased with increasing complexity of the cognitive task. There was no significant effect of age and group on cognitive DTC. Conclusion Our results suggest that regardless of age and disease group, simple cognitive tasks show the largest and most stable cognitive effects during DT. This may be relevant to the design of future observational studies, clinical trials and for clinical routine

    Reliability of IMU-Derived Static Balance Parameters in Neurological Diseases

    Get PDF
    Static balance is a commonly used health measure in clinical practice. Usually, static balance parameters are assessed via force plates or, more recently, with inertial measurement units (IMUs). Multiple parameters have been developed over the years to compare patient groups and understand changes over time. However, the day-to-day variability of these parameters using IMUs has not yet been tested in a neurogeriatric cohort. The aim of the study was to examine day-to-day variability of static balance parameters of five experimental conditions in a cohort of neurogeriatric patients using data extracted from a lower back-worn IMU. A group of 41 neurogeriatric participants (age: 78 ± 5 years) underwent static balance assessment on two occasions 12-24 h apart. Participants performed a side-by-side stance, a semi-tandem stance, a tandem stance on hard ground with eyes open, and a semi-tandem assessment on a soft surface with eyes open and closed for 30 s each. The intra-class correlation coefficient (two-way random, average of the k raters' measurements, ICC2, k) and minimal detectable change at a 95% confidence level (MDC95%) were calculated for the sway area, velocity, acceleration, jerk, and frequency. Velocity, acceleration, and jerk were calculated in both anterior-posterior (AP) and medio-lateral (ML) directions. Nine to 41 participants could successfully perform the respective balance tasks. Considering all conditions, acceleration-related parameters in the AP and ML directions gave the highest ICC results. The MDC95% values for all parameters ranged from 39% to 220%, with frequency being the most consistent with values of 39-57%, followed by acceleration in the ML (43-55%) and AP direction (54-77%). The present results show moderate to poor ICC and MDC values for IMU-based static balance assessment in neurogeriatric patients. This suggests a limited reliability of these tasks and parameters, which should induce a careful selection of potential clinically relevant parameters

    Step Length Is a Promising Progression Marker in Parkinson's Disease

    Get PDF
    Current research on Parkinson's disease (PD) is increasingly concerned with the identification of objective and specific markers to make reliable statements about the effect of therapy and disease progression. Parameters from inertial measurement units (IMUs) are objective and accurate, and thus an interesting option to be included in the regular assessment of these patients. In this study, 68 patients with PD (PwP) in Hoehn and Yahr (H&Y) stages 1-4 were assessed with two gait tasks-20 m straight walk and circular walk-using IMUs. In an ANCOVA model, we found a significant and large effect of the H&Y scores on step length in both tasks, and only a minor effect on step time. This study provides evidence that from the two potentially most important gait parameters currently accessible with wearable technology under supervised assessment strategies, step length changes substantially over the course of PD, while step time shows surprisingly little change in the progression of PD. These results show the importance of carefully evaluating quantitative gait parameters to make assumptions about disease progression, and the potential of the granular evaluation of symptoms such as gait deficits when monitoring chronic progressive diseases such as PD
    corecore