4,061 research outputs found

    Tachyon cosmology with non-vanishing minimum potential: a unified model

    Full text link
    We investigate the tachyon condensation process in the effective theory with non-vanishing minimum potential and its implications to cosmology. It is shown that the tachyon condensation on an unstable three-brane described by this modified tachyon field theory leads to lower-dimensional branes (defects) forming within a stable three-brane. Thus, in the cosmological background, we can get well-behaved tachyon matter after tachyon inflation, (partially) avoiding difficulties encountered in the original tachyon cosmological models. This feature also implies that the tachyon inflated and reheated universe is followed by a Chaplygin gas dark matter and dark energy universe. Hence, such an unstable three-brane behaves quite like our universe, reproducing the key features of the whole evolutionary history of the universe and providing a unified description of inflaton, dark matter and dark energy in a very simple single-scalar field model.Comment: 18 p

    A Possible Cepheid-Like Luminosity Estimator for the Long Gamma-Ray Bursts

    Get PDF
    We present a possible Cepheid-like luminosity estimator for the long gamma-ray bursts based on the variability of their light curves. To construct the luminosity estimator, we use CGRO/BATSE data for 13 bursts, Wind/KONUS data for 5 bursts, Ulysses/GRB data for 1 burst, and NEAR/XGRS data for 1 burst. Spectroscopic redshifts, peak fluxes, and high resolution light curves are available for 11 of these bursts; partial information is available for the remaining 9 bursts. We find that the isotropic-equivalent luminosities L of these bursts positively correlate with a rigorously-constructed measure V of the variability of their light curves. We fit a model to these data that accommodates both intrinsic scatter (statistical variance) and extrinsic scatter (sample variance). If one excludes GRB 980425 from the fit on the grounds that its association with SN 1998bw at a redshift of z = 0.0085 is not secure, the luminosity estimator spans approx. 2.5 orders of magnitude in L, and the slope of the correlation between L and V is positive with a probability of 1 - 1.4 x 10^-4 (3.8 sigma). Although GRB 980425 is excluded from this fit, its L and V values are consistent with the fitted model, which suggests that GRB 980425 may well be associated with SN 1998bw, and that GRB 980425 and the cosmological bursts may share a common physical origin. If one includes GRB 980425 in the fit, the luminosity estimator spans approx. 6.3 orders of magnitude in L, and the slope of the correlation is positive with a probability of 1 - 9.3 x 10^-7 (4.9 sigma). Independently of whether or not GRB 980425 should be included in the fit, its light curve is unique in that it is much less variable than the other approx. 17 light curves in our sample for which the signal-to-noise is reasonably good.Comment: Accepted to The Astrophysical Journal, 31 pages, 13 figures, LaTe

    TGRS Observations of Positron Annihilation in Classical Novae

    Get PDF
    The TGRS experiment on board the Wind spacecraft has many advantages as a sky monitor --- broad field of view (~2 pi) centered on the south ecliptic pole), long life (1994-present), and stable low background and continuous coverage due to Wind's high altitude high eccentricity orbit. The Ge detector has sufficient energy resolution (3-4 keV at 511 keV) to resolve a cosmic positron annihilation line from the strong background annihilation line from beta-decays induced by cosmic ray impacts on the instrument, if the cosmic line is Doppler-shifted by this amount. Such lines (blueshifted) are predicted from nucleosynthesis in classical novae. We have searched the entire TGRS database for 1995-1997 for this line, with negative results. In principle such a search could yield an unbiased upper limit on the highly-uncertain Galactic nova rate. We carefully examined the times around the known nova events during this period, also with negative results. The upper limit on the nova line flux in a 6-hr interval is typically <3.8 E-3 photon/(cm2 s) at 4.6 sigma. We performed the same analysis for times around the outburst of Nova Vel 1999, obtaining a worse limit due to recent degradation of the detector response caused by cosmic ray induced damage.Comment: 5 pp. inc. 3 figs. Proc. 5th Compton Symposium (AIP Conf. Series), ed. M. McConnell, in pres

    Exciting dark matter in the galactic center

    Full text link
    We reconsider the proposal of excited dark matter (DM) as an explanation for excess 511 keV gamma rays from positrons in the galactic center. We quantitatively compute the cross section for DM annihilation to nearby excited states, mediated by exchange of a new light gauge boson with off-diagonal couplings to the DM states. In models where both excited states must be heavy enough to decay into e^+ e^- and the ground state, the predicted rate of positron production is never large enough to agree with observations, unless one makes extreme assumptions about the local circular velocity in the Milky Way, or alternatively if there exists a metastable population of DM states which can be excited through a mass gap of less than 650 keV, before decaying into electrons and positrons.Comment: Dedicated to the memory of Lev Kofman; 16 pages, 9 figures; v3 added refs, minor changes, accepted to PR

    The gamma-ray spectrum of Centaurus A: A high-resolution observation between 70 keV and 8 MeV

    Get PDF
    The NASA/Goddard Space Flight Center Low Energy Gamma ray Spectrometer (LEGS) observed the nearby active nucleus galaxy Centaurus A (NGC 5128) during a balloon flight on 1981 November 19. There is no evidence of a break in the spectrum or of any line features. The 1.6 MeV limit is a factor of 8 lower than the 1974 line flux, indicating that, if the 1974 feature was real, and, if it was narrow, then the line intensity decreased significantly between 1974 and 1981. The lack of observed annihilation radiation from Cen A, combined with the temporal variations that are seen in the X-ray and gamma-ray intensities, constrain the size of the emission region to be between 10 to the 13th power and 5 x 10 to the 17th power cm

    Unusual Burst Emission from the New Soft Gamma Repeater SGR1627-41

    Get PDF
    In June-July,1998 the Konus-Wind burst spectrometer observed a series of bursts from the new soft gamma repeater SGR1627-41. Time histories and energy spectra of the bursts have been studied, revealing fluences and peak fluxes in the ranges of 3x10^{-7} - 7.5x10^{-6} erg cm^{-2} and 10^{-5} - 10^{-4}erg cm^{-2}/s respectively. One event, 18 June 6153.5sUT stands out dramatically from this series. Its fluence is ~7x10^{-4} erg cm^{-2} and peak flux ~2x10^{-2} erg cm^{-2}/s. These values from a source at a distance of 5.8 kpc yield an energy output of ~3x10^{42}erg and maximum luminosity of ~8x10^{43} erg/s, similar to the values for the famous March 5, 1979 and August27,1998 events. In terms of energy, this event is another giant outburst seen in a third SGR! However, this very energetic burst differs significantly from the other giant outbursts. It exhibits no separate initial pulse with a fast rise time, no extended tail, and no pulsations. It is rather similar to ordinary repeated bursts but is a few hundred times stronger in intensity. According to the magnetar model by Thompson and Duncan (1995) such a burst may be initiated by a strong starquake when a crust fracture propagates over the whole surface of a neutron star.Comment: 7 pages, 5 figures. To be appeared in ApJ

    Cosmological Expansion in the Presence of an Extra Dimension

    Full text link
    It has recently been pointed out that global solutions of Einstein's equations for a 3-brane universe embedded in 4 spatial dimensions give rise to a Friedmann equation of the form H ~ rho on the brane, instead of the usual H ~ (rho)^{1/2}, which is inconsistent with cosmological observations. We remedy this problem by adding cosmological constants to the brane and the bulk, as in the recent scenario of Randall and Sundrum. Our observation allows for normal expansion during nucleosynthesis, but faster than normal expansion in the very early universe, which could be helpful for electroweak baryogenesis, for example.Comment: 4pp, latex, 1 figure; added and corrected references; revised incorrect argument about sign of action on brane; final version to be published in PR

    The world is not enough

    Get PDF
    We show that the 5-dimensional model introduced by Randall and Sundrum is (half of) a wormhole, and that this is a general result in models of the RS type. We also discuss the gravitational trapping of a scalar particle in 5-d spacetimes. Finally, we present a simple model of brane-world cosmology in which the background is a static anti-de Sitter manifold, and the location of the two 3-branes is determined by the technique of ``surgical grafting''.Comment: To be published in Phys. Rev. D with the title: ``Wormhole-surgery and cosmology on the brane: The world is not enough''. This revised version includes a discussion on the mechanism of gravitational trapping for a scalar particle which will not be published in the journa
    • 

    corecore