2,664 research outputs found
Mass influx obtained from low-light-level television observations of faint meteors
Low light level television systems offer the ability to observe meteors as faint as 10th magnitude which allows the extension of optical meteor data to masses as small as 0.0001 gram. The results of these observations, using image orthicons and intensified vidicons, are presented along with an interpretation in terms of mass flux. This interpretation includes the development of a relationship between peak luminosity of a meteor and mass, velocity, and zenith angle that was derived from single body meteor theory and compares favorably with results obtained from the artificial meteor program. Also included in the mass flux interpretation is an analysis of the observation response of a LLLTV system to fixed and moving point sources
Space station particulate contamination environment
The origin of particulate contamination on the Space Station will mostly be from pre-launch operations. The adherence and subsequent release of these particles during space flight are discussed. Particle size, release velocity, and release direction are important in determining particle behavior in the vicinity of the vehicle. The particulate environment at the principal science instrument locations is compared to the space shuttle bay environment. Recommendations for possibly decreasing the particulate contamination are presented
Dynamics of a lattice Universe
We find a solution to Einstein field equations for a regular toroidal lattice
of size L with equal masses M at the centre of each cell; this solution is
exact at order M/L. Such a solution is convenient to study the dynamics of an
assembly of galaxy-like objects. We find that the solution is expanding (or
contracting) in exactly the same way as the solution of a
Friedman-Lema\^itre-Robertson-Walker Universe with dust having the same average
density as our model. This points towards the absence of backreaction in a
Universe filled with an infinite number of objects, and this validates the
fluid approximation, as far as dynamics is concerned, and at the level of
approximation considered in this work.Comment: 14 pages. No figure. Accepted version for Classical and Quantum
Gravit
Volume Weighted Measures of Eternal Inflation in the Bousso-Polchinski Landscape
We consider the cosmological dynamics associated with volume weighted
measures of eternal inflation, in the Bousso-Polchinski model of the string
theory landscape. We find that this measure predicts that observers are most
likely to find themselves in low energy vacua with one flux considerably larger
than the rest. Furthermore, it allows for a satisfactory anthropic explanation
of the cosmological constant problem by producing a smooth, and approximately
constant, distribution of potentially observable values of Lambda. The low
energy vacua selected by this measure are often short lived. If we require
anthropically acceptable vacua to have a minimum life-time of 10 billion years,
then for reasonable parameters a typical observer should expect their vacuum to
have a life-time of approximately 12 billion years. This prediction is model
dependent, but may point toward a solution to the coincidence problem of
cosmology.Comment: 35 pages, 8 figure
Exact Evolution of Discrete Relativistic Cosmological Models
22 pages, 16 figures22 pages, 16 figuresWe study the effects of inhomogeneities on the evolution of the Universe, by considering a range of cosmological models with discretized matter content. This is done using exact and fully relativistic methods that exploit the symmetries in and about submanifolds of spacetimes that themselves possess no continuous global symmetries. These methods allow us to follow the evolution of our models throughout their entire history, far beyond what has previously been possible. We find that while some space-like curves collapse to anisotropic singularities in finite time, others remain non-singular forever. The resulting picture is of a cosmological spacetime in which some behaviour remains close to Friedmann-like, while other behaviours deviate radically. In particular, we find that large-scale acceleration is possible without any violation of the energy conditions
An exact quantification of backreaction in relativistic cosmology
An important open question in cosmology is the degree to which the
Friedmann-Lemaitre-Robertson-Walker (FLRW) solutions of Einstein's equations
are able to model the large-scale behaviour of the locally inhomogeneous
observable universe. We investigate this problem by considering a range of
exact n-body solutions of Einstein's constraint equations. These solutions
contain discrete masses, and so allow arbitrarily large density contrasts to be
modelled. We restrict our study to regularly arranged distributions of masses
in topological 3-spheres. This has the benefit of allowing straightforward
comparisons to be made with FLRW solutions, as both spacetimes admit a discrete
group of symmetries. It also provides a time-symmetric hypersurface at the
moment of maximum expansion that allows the constraint equations to be solved
exactly. We find that when all the mass in the universe is condensed into a
small number of objects (<10) then the amount of backreaction in dust models
can be large, with O(1) deviations from the predictions of the corresponding
FLRW solutions. When the number of masses is large (>100), however, then our
measures of backreaction become small (<1%). This result does not rely on any
averaging procedures, which are notoriously hard to define uniquely in general
relativity, and so provides (to the best of our knowledge) the first exact and
unambiguous demonstration of backreaction in general relativistic cosmological
modelling. Discrete models such as these can therefore be used as laboratories
to test ideas about backreaction that could be applied in more complicated and
realistic settings.Comment: 13 pages, 9 figures. Corrections made to Tables IV and
Capacitor Optimization in Power Distribution Networks Using Numerical Computation Techniques
This paper presents a power distribution network (PDN) decoupling capacitor
optimization application with three primary goals: reduction of solution times
for large networks, development of flexible network scoring routines, and a
concentration strictly on achieving the best network performance. Example
optimizations are performed using broadband models of a printed circuit board
(PCB), a chip-package, on-die networks, and candidate capacitors. A novel
worst-case time-domain optimization technique is presented as an alternative to
the traditional frequency-domain approach. The trade-offs and criteria for
scoring the computed network are presented. The output is a recommended set of
capacitors which can then be applied to the product design.Comment: 24 pages, 13 figures, DesignCon 202
Generic Bell correlation between arbitrary local algebras in quantum field theory
We prove that for any two commuting von Neumann algebras of infinite type,
the open set of Bell correlated states for the two algebras is norm dense. We
then apply this result to algebraic quantum field theory -- where all local
algebras are of infinite type -- in order to show that for any two spacelike
separated regions, there is an open dense set of field states that dictate Bell
correlations between the regions. We also show that any vector state cyclic for
one of a pair of commuting nonabelian von Neumann algebras is entangled (i.e.,
nonseparable) across the algebras -- from which it follows that every field
state with bounded energy is entangled across any two spacelike separated
regions.Comment: Third version; correction in the proof of Proposition
Non-local Correlations are Generic in Infinite-Dimensional Bipartite Systems
It was recently shown that the nonseparable density operators for a bipartite
system are trace norm dense if either factor space has infinite dimension. We
show here that non-local states -- i.e., states whose correlations cannot be
reproduced by any local hidden variable model -- are also dense. Our
constructions distinguish between the cases where both factor spaces are
infinite-dimensional, where we show that states violating the CHSH inequality
are dense, and the case where only one factor space is infinite-dimensional,
where we identify open neighborhoods of nonseparable states that do not violate
the CHSH inequality but show that states with a subtler form of non-locality
(often called "hidden" non-locality) remain dense.Comment: 8 pages, RevTe
- …