46 research outputs found

    The first decade of web-based sports injury surveillance: Descriptive epidemiology of injuries in US high school girls’ basketball (2005–2006 through 2013–2014) and National Collegiate Athletic Association women’s basketball (2004–2005 through 2013–2014)

    Get PDF
    Context: The advent of Web-based sports injury surveillance via programs such as the High School Reporting Information Online system and the National Collegiate Athletic Association Injury Surveillance Program has aided the acquisition of girls’ and women’s basketball injury data. Objective: To describe the epidemiology of injuries sustained in high school girls’ basketball in the 2005–2006 through 2013–2014 academic years and collegiate women’s basketball in the 2004–2005 through 2013–2014 academic years using Web-based sports injury surveillance. Design: Descriptive epidemiology study. Setting: Online injury surveillance from basketball teams in high school girls (annual average ¼ 100) and collegiate women (annual average ¼ 57). Patients or Other Participants: Girls’ and women’s basketball players who participated in practices and competitions during the 2005–2006 through 2013–2014 academic years in high school or the 2004–2005 through 2013–2014 academic years in college. Main Outcome Measure(s): Certified athletic trainers collected time-loss (24 hours) injury and exposure data. Injury rates per 1000 athlete-exposures (AEs) were calculated. Injury rate ratios (IRRs) with 95% confidence intervals (CIs) were used to compare injury rates by school size or division, time in season, event type, and competition level. Results: The High School Reporting Information Online system documented 2930 time-loss injuries during 1 609 733 AEs; the National Collegiate Athletic Association Injury Surveillance Program documented 3887 time-loss injuries during 783 600 AEs. The injury rate was higher in college than in high school (4.96 versus 1.82/1000 AEs; IRR ¼ 2.73; 95% CI ¼ 2.60, 2.86). The injury rate was higher in competitions than in practices for both high school (IRR ¼ 3.03; 95% CI ¼ 2.82, 3.26) and collegiate (IRR ¼ 1.99; 95% CI ¼ 1.86, 2.12) players. The most common injuries at both levels were ligament sprains, concussions, and muscle/tendon strains; the majority of injuries affected the ankle, knee, and head/face. These injuries were often caused by contact with another player or a noncontact mechanism. Conclusions: Injury rates were higher in collegiate than in high school athletes and in competitions than in practices. Similarities in distributions of injuries by body parts, specific diagnoses, and mechanisms of injury suggest that both levels may benefit from similar injury-prevention strategies

    The first decade of web-based sports injury surveillance: Descriptive epidemiology of injuries in US high school boys’ basketball (2005–2006 through 2013–2014) and National Collegiate Athletic Association men’s basketball (2004–2005 through 2013–2014)

    Get PDF
    Context: The advent of Web-based sports injury surveillance via programs such as the High School Reporting Information Online system and the National Collegiate Athletic Association Injury Surveillance Program has aided the acquisition of boys’ and men’s basketball injury data. Objective: To describe the epidemiology of injuries sustained in high school boys’ basketball in the 2005–2006 through 2013–2014 academic years and collegiate men’s basketball in the 2004–2005 through 2013–2014 academic years using Web-based sports injury surveillance. Design: Descriptive epidemiology study. Setting: Online injury surveillance from basketball teams of high school boys (annual average ¼ 100) and collegiate men (annual average ¼ 55). Patients or Other Participants: Boys’ and men’s basketball players who participated in practices and competitions during the 2005–2006 through 2013–2014 academic years in high school or the 2004–2005 through 2013–2014 academic years in college. Main Outcome Measures: Athletic trainers collected time-loss (24 hours) injury and exposure data. Injury rates per 1000 athlete-exposures (AEs) were calculated. Injury rate ratios (IRRs) with 95% confidence intervals (CIs) compared injury rates by school size or division, time in season, event type, and competition level. Results: The High School Reporting Information Online system documented 3056 time-loss injuries during 1 977 480 AEs; the National Collegiate Athletic Association Injury Surveillance Program documented 4607 time-loss injuries during 868 631 AEs. The injury rate was higher for college than for high school (5.30 versus 1.55/1000 AE; IRR ¼ 3.43; 95% CI ¼ 3.28, 3.59). The injury rate was higher for competitions than for practices in both high school (IRR ¼ 2.38; 95% CI ¼ 2.22, 2.56) and college (IRR ¼ 2.02; 95% CI ¼ 1.90, 2.14). The most common injuries at both levels were ligament sprains, muscle/ tendon strains, and concussions; most injuries affected the ankle, knee, and head/face. Injuries were most often caused by contact with another player or noncontact mechanisms. Conclusions: Injury rates were greater among collegiate players compared with high school players and were greater during competitions than practices at both levels. Distributions of injuries by body part, diagnoses, and mechanisms of injury were similar, suggesting that athletes at both levels may benefit from similar injury-prevention strategies

    Light propagation in statistically homogeneous and isotropic universes with general matter content

    Full text link
    We derive the relationship of the redshift and the angular diameter distance to the average expansion rate for universes which are statistically homogeneous and isotropic and where the distribution evolves slowly, but which have otherwise arbitrary geometry and matter content. The relevant average expansion rate is selected by the observable redshift and the assumed symmetry properties of the spacetime. We show why light deflection and shear remain small. We write down the evolution equations for the average expansion rate and discuss the validity of the dust approximation.Comment: 42 pages, no figures. v2: Corrected one detail about the angular diameter distance and two typos. No change in result

    Researching COVID to enhance recovery (RECOVER) pregnancy study: Rationale, objectives and design

    Get PDF
    Importance Pregnancy induces unique physiologic changes to the immune response and hormonal changes leading to plausible differences in the risk of developing post-acute sequelae of SARS-CoV-2 (PASC), or Long COVID. Exposure to SARS-CoV-2 during pregnancy may also have long-term ramifications for exposed offspring, and it is critical to evaluate the health outcomes of exposed children. The National Institutes of Health (NIH) Researching COVID to Enhance Recovery (RECOVER) Multi-site Observational Study of PASC aims to evaluate the long-term sequelae of SARS-CoV-2 infection in various populations. RECOVER-Pregnancy was designed specifically to address long-term outcomes in maternal-child dyads. Methods RECOVER-Pregnancy cohort is a combined prospective and retrospective cohort that proposes to enroll 2,300 individuals with a pregnancy during the COVID-19 pandemic and their offspring exposed and unexposed in utero, including single and multiple gestations. Enrollment will occur both in person at 27 sites through the Eunice Kennedy Shriver National Institutes of Health Maternal-Fetal Medicine Units Network and remotely through national recruitment by the study team at the University of California San Francisco (UCSF). Adults with and without SARS-CoV-2 infection during pregnancy are eligible for enrollment in the pregnancy cohort and will follow the protocol for RECOVER-Adult including validated screening tools, laboratory analyses and symptom questionnaires followed by more in-depth phenotyping of PASC on a subset of the overall cohort. Offspring exposed and unexposed in utero to SARS-CoV-2 maternal infection will undergo screening tests for neurodevelopment and other health outcomes at 12, 18, 24, 36 and 48 months of age. Blood specimens will be collected at 24 months of age for SARS-CoV-2 antibody testing, storage and anticipated later analyses proposed by RECOVER and other investigators. Discussion RECOVER-Pregnancy will address whether having SARS-CoV-2 during pregnancy modifies the risk factors, prevalence, and phenotype of PASC. The pregnancy cohort will also establish whether there are increased risks of adverse long-term outcomes among children exposed in utero

    Biofuels, greenhouse gases and climate change. A review

    Full text link

    The Physics of the B Factories

    Get PDF

    <sup>13</sup>C-Carbamylation as a mechanistic probe for the inhibition of class D β-lactamases by avibactam and halide ions

    Get PDF
    The class D (OXA) serine β-lactamases are a major cause of resistance to β-lactam antibiotics. The class D enzymes are unique amongst β-lactamases because they have a carbamylated lysine that acts as a general acid/base in catalysis. Previous crystallographic studies led to the proposal that β-lactamase inhibitor avibactam targets OXA enzymes in part by promoting decarbamylation. Similarly, halide ions are proposed to inhibit OXA enzymes via decarbamylation. NMR analyses, in which the carbamylated lysines of OXA-10, -23 and -48 were 13C-labelled, indicate that reaction with avibactam does not ablate lysine carbamylation in solution. While halide ions did not decarbamylate the 13C-labelled OXA enzymes in the absence of substrate or inhibitor, avibactam-treated OXA enzymes were susceptible to decarbamylation mediated by halide ions, suggesting halide ions may inhibit OXA enzymes by promoting decarbamylation of acyl-enzyme complex. Crystal structures of the OXA-10 avibactam complex were obtained with bromide, iodide, and sodium ions bound between Trp-154 and Lys-70. Structures were also obtained wherein bromide and iodide ions occupy the position expected for the ‘hydrolytic water’ molecule. In contrast with some solution studies, Lys-70 was decarbamylated in these structures. These results reveal clear differences between crystallographic and solution studies on the interaction of class D β-lactamases with avibactam and halides, and demonstrate the utility of 13C-NMR for studying lysine carbamylation in solution

    Iron traffics in circulation bound to a siderocalin (Ngal)-catechol complex

    No full text
    The lipocalins are secreted proteins that bind small organic molecules. Scn-Ngal (also known as neutrophil gelatinase associated lipocalin, siderocalin, lipocalin 2) sequesters bacterial iron chelators, called siderophores, and consequently blocks bacterial growth. However, Scn-Ngal is also prominently expressed in aseptic diseases, implying that it binds additional ligands and serves additional functions. Using chemical screens, crystallography and fluorescence methods, we report that Scn-Ngal binds iron together with a small metabolic product called catechol. The formation of the complex blocked the reactivity of iron and permitted its transport once introduced into circulation in vivo. Scn-Ngal then recycled its iron in endosomes by a pH-sensitive mechanism. As catechols derive from bacterial and mammalian metabolism of dietary compounds, the Scn-Ngal-catechol-Fe(III) complex represents an unforeseen microbial-host interaction, which mimics Scn-Ngal-siderophore interactions but instead traffics iron in aseptic tissues. These results identify an endogenous siderophore, which may link the disparate roles of Scn-Ngal in different diseases
    corecore