9 research outputs found

    Effects of Pre- and Post-Exercise Protein vs. Carbohydrate Ingestion on Training Adaptations in Collegiate Female Athletes

    Get PDF
    The role of nutrient timing both before and after daily training sessions is now a major part of the nutritional recommendations for athletes to maximize training adaptations. However, there still exists some questions on the ideal macronutrient selection for these pre- and post-workout meals. PURPOSE: To investigate the potential effects of protein vs. carbohydrate ingestion in collegiate female basketball players. METHODS: 14 (20.2 ± 1.4 years, 169.4 ± 5.8 cm, 67.5 ± 6.1 kg, 27.1 ± 4.4 %BF) NCAA Division III female basketball players were matched by weight and randomly assigned in a double-blind manner to consume 24 grms whey protein (WP) or 24 grms maltodextrin (MD) pre- and post-exercise for eight weeks. Subjects participated in a supervised 4-day per week undulating periodized resistance and anaerobic training program. At 0 and 8-weeks, subjects underwent DEXA body composition analysis and upper- and lower-body 1RM strength, vertical jump, 5-10-5, and broad jump testing. Data were analyzed using repeated measures ANOVA (p≤0.05) and are presented as mean ± SD changes. RESULTS: Significant group x time interaction effects were observed among groups for bench press 1RM (p = 0.043) and DEXA lean mass (p = 0.026) indicating that the WP group resulted in a more substantial training adaptations over the MD group. A significant time effect (p \u3c 0.05) was observed for DEXA %BF (%change: -4.87 ± 4%), DEXA fat mass (%change: -4.33 ± 5%), leg press 1RM (%change: 13.57 ± 7%), vertical jump (%change: 9.95 ± 6%), 5-10-5 (%change: -3.1 ± 2%), and broad jump (%change: 3.9 ± 4%) suggesting that the stimulus of the training protocol was adequate to promote anaerobic physiological adaptations. CONCLUSION: In regards to nutrient timing, our results suggest that whey protein ingestion both pre- and post-training is a greater stimulus for increases in lean mass in female collegiate anaerobic athletes as compared to the ingestion of carbohydrates. This translated into a significant difference in upper body 1RM strength, however, despite significant training adaptations occurring over the 8 week trial, no significant differences occurred in lower body strength, vertical and broad jump, and 5-10-5 time between WP and MD groups

    Acute effects of a commercially-available pre-workout supplement on markers of training: a double-blind study

    Get PDF
    Background: Pre-workout supplements containing numerous ingredients claim to increase performance and strength. Product-specific research is important for identifying efficacy of combined ingredients. The purpose of this study was to evaluate the effects of a proprietary pre-workout dietary supplement containing creatine monohydrate, beta-alanine, L-Tarurine, L-Leucine, and caffeine, on anaerobic power, muscular strength, body composition, and mood states. Methods: In a double-blind, randomized, matched-pair design, twenty male subjects (mean ± SD; 22.4 ± 9.5 yrs, 76.9 ± 11.2 kg, 22.7 ± 9.5% body fat), consumed either 30 g of a pre-workout supplement (SUP) or maltodextrin placebo (PLC) 30 minutes before a resistance training workout, after completing baseline testing. Body composition was determined via dual-energy x-ray absorptiometry (DEXA). Subjects completed 12 vertical jumps for height (VJ) and one repetition maximum (1RM) and repetitions to failure lifts on bench (BPM) and leg press (LPM). Finally, subjects completed a Wingate power test on a cycle ergometer [mean power (WMP) and peak power (WPP)]. After baseline testing, participants completed eight days of supplementation and four split-body resistance-training bouts. Side effect questionnaires were completed daily 30 minutes after consuming the supplement. Subjects completed post-supplement testing on Day 8. Data were analyzed utilizing a 2 × 2 repeated measures ANOVA [treatment (PLC vs SUP) × time (T1 vs T2)] and ninety-five percent confidence intervals. Results: There were no significant treatment × time interactions (p > 0.05). There were no significant changes in %body fat (%BF; Δ-0.43 ± 0.58; p = 0.920), fat mass (Δ-2.45 ± 5.72; p = 0.988), or lean body mass (LBM; 10.9 ± 12.2; p = 0.848). 95% CI demonstrated significant LBM increases for both groups. There was a main effect for time for WPP (Δ100.5 ± 42.7W; p = 0.001), BPM (Δ8.0 ± 12.9 lbs; p = 0.001), and LPM (Δ80.0 ± 28.8 lbs; p = 0.001), with no significant differences between treatments. There was no significant difference in mood states between groups or over time. Conclusion: The proprietary pre-workout blend combined with eight days of training did not significantly (ANOVA) improve body composition or performance. While not significant, greater gains in LPM were demonstrated in the SUP group for lean body mass and lower body strength. Future studies should evaluate more chronic effects of proprietary pre-workout blends on total training volume and performance outcomes

    Fenugreek Extract Supplementation Has No effect on the Hormonal Profile of Resitance-Trained Males

    Get PDF
    Fenugreek is herb that has several purported uses in animal models. Despite no substantiated claims in human research models, fenugreek has been marketed in dietary products as having anabolic potential for resistance trained athletes. PURPOSE: The purpose of this study was to investigate the potential anabolic effects of fenugreek extract supplementation in conjunction with a controlled resistance training program. METHODS: Forty-five resistance trained males were matched by fat free mass and randomly assigned to ingest in a double blind manner capsules containing 500mg of a placebo (PL) (N = 24, 20.1 ± 2.6 yr, 85.5 ±13.4 kg, 177.00 ± 6.1 cm) or fenugreek extract (FE) (N = 21, 21.4 ± 2.95 yr, 89.9 ±18.8 kg, 178.00 ± 6.27 cm). Subjects participated in a supervised 4-day per week periodized resistance-training program for 8 weeks in conjunction with supplementation. Venous blood samples were obtained using standard procedures at baseline (PRE), 4 weeks, and 8-weeks (POST). Serum analyses included cortisol, insulin, leptin, free testosterone, estrogen, and DHT. Statistical analyses utilized a two-way ANOVA with repeated measures for serum hormone responses (p\u3c0.05). RESULTS: A significant interaction (p\u3c0.05) between groups for DHT was observed for PL (PRE: 1187±482; POST: 1258±493 pg/ml) and FE (PRE: 1263±496; POST: 1144±447 pg/ml) indicating that supplementation resulted in significant decrease in DHT levels. Significant differences in DHT responses from supplementation showed a -9.42% change for the FE group accompanied with a 5.98% increase in the PL group. No significant effects for groups or interactions were observed for the anabolic hormones free testosterone and estrogen (p\u3c0.05). Additionally, no significant main effects for groups or time were observed for the metabolic hormones insulin, cortisol, and leptin (p\u3c0.05). CONCLUSIONS: Supplementation of fenugreek extract resulted in a decrease in serum DHT levels in comparison to placebo. However, other anabolic and metabolic hormone analyses were not affected by supplementation. We conclude that in conjunction with structured resistance training, supplementation of fenugreek extract does not appear to affect hormonal status in resistance trained males and shows no anabolic potential as has been purported. This study was supported by INDUS BIOTEC

    Effects of a pre-and post-workout protein-carbohydrate supplement in trained crossfit individuals

    Get PDF
    Abstract Purpose The purpose was to assess effects of a pre- and a post-workout protein-carbohydrate supplement on CrossFit-specific performance and body composition. Methods In an open label randomized study, 13 male and 16 female trained Crossfit participants (mean ± SD; age: 31.87 ± 7.61 yrs, weight: 78.68 ± 16.45 kg, percent body fat: 21.97 ± 9.02) were assessed at 0 and 6 weeks for body composition, VO2max, Wingate peak (WPP) and mean power (WMP), in addition to sport-specific workouts (WOD1: 500 m row, 40 wall balls, 30 push-ups, 20 box jumps, 10 thrusters for time; WOD2: 15 minutes to complete an 800 m run "buy in", followed by as many rounds as possible (AMRAP) of 5 burpees, 10 Kettlebell swings, 15 air squats). The supplement (SUP) group consisted of 19 g of a pre-workout drink (extracts of pomegranate, tart cherry, green and black tea) taken 30 minutes before and a post-workout protein (females: 20 g; males: 40 g) and carbohydrate (females: 40 g; males: 80 g) supplement consumed immediately after each workout. The control (CTL) group consumed only water one hour before or after workouts. Participants completed three (minimum) varied workouts per week at a CrossFit gym as typical to habitual training throughout the six week study. Data were analyzed by repeated measures ANOVA (p <0 .05), 95% Confidence Intervals, and Magnitude Inferences. Results There were no time × group interactions for body composition, WMP, or WOD1 based on ANOVA statistics. VO2MAX, WPP, and WOD2 results revealed that the pre/post supplements were likely beneficial after 95% Confidence Intervals and Magnitude Inferences analysis. Conclusion The combination of proprietary supplements taken for 6 weeks may provide benefits during certain sport-specific performance in trained CrossFit athletes but not others

    Proceedings of the Thirteenth International Society of Sports Nutrition (ISSN) Conference and Expo

    Get PDF
    Meeting Abstracts: Proceedings of the Thirteenth International Society of Sports Nutrition (ISSN) Conference and Expo Clearwater Beach, FL, USA. 9-11 June 201

    Effects of a High Protein and Omega-3-Enriched Diet with or Without Creatine Supplementation on Markers of Soreness and Inflammation During 5 Consecutive Days of High Volume Resistance Exercise in Females

    No full text
    We examined if two different dietary interventions affected markers of soreness and inflammation over a 5-day high-volume resistance training protocol in females that resistance-trained 8 weeks prior. Twenty-eight females (age: 20 ± 1 yr; body mass: 63.5 ± 1.6 kg, height: 1.67 ± 0.01 m) completed 4 weeks of pre-training (weeks 1-4) followed by a subsequent 4-week training period along with a dietary intervention (weeks 5-8). Dietary interventions from weeks 5-8 included: a) no intervention (CTL, n = 10) b) a higher-protein diet supplemented with hydrolyzed whey protein (50 g/d) and omega-3 fatty acids (900 mg/d) (DI, n = 8), and c) the DI condition as well as creatine monohydrate (5 g/d) (DI+C, n = 10). During week 9, participants resistance-trained for five consecutive days whereby 8 sets of 10 target repetitions at 70% one repetition maximum (1RM) were performed each day for bench press, back squat, deadlift, and hip-thrusters with the intent of eliciting muscle soreness and inflammation. Prior to and 24 h following each of the 5 bouts muscle soreness (DOMS) was assessed via questionnaire, and fasting blood was obtained and analyzed for serum cortisol, interleukin-6 (IL-6) and C-reactive protein (CRP). No group*time (G*T) or time effects were observed for training volume over the 5-d overreaching protocol. Furthermore, no group*time (G*T) or time effects were observed for serum cortisol, IL-6 or CRP, and DOMS actually decreased in all groups 24 h following the fifth day training bout. This study demonstrates that, regardless of protein, omega-3 fatty acid and/or creatine supplementation, 5 days of consecutive resistance training does not alter perceived muscle soreness, training volume, and/or markers of inflammation in novice resistance-trained females

    THE EFFECTS OF PRE-AND POST-EXERCISE WHEY VS. CASEIN PROTEIN CONSUMPTION ON BODY COMPOSITION AND PERFORMANCE MEASURES IN COLLEGIATE FEMALE ATHLETES

    No full text
    Two of the most popular forms of protein on the market are whey and casein. Both proteins are derived from milk but each protein differs in absorption rate and bioavailability, thus it is possible that each type of protein may contribute differently to the adaptations elicited through resistance training. Therefore, the purpose of this study was to investigate the potential effects of ingestion of two types of protein in conjunction with a controlled resistance training program in collegiate female basketball players. Sixteen NCAA Division III female basketball players were matched according to body mass and randomly assigned in a double-blind manner to consume 24 g whey protein (WP) (N = 8, 20.0 ± 1.9 years, 1.58 ± 0.27 m, 66. 0 ± 4.9 kg, 27.0 ± 4.9 %BF) or 24 g casein protein (CP) (N = 8, 21.0 ± 2.8 years, 1.53 ± 0.29 m, 68.0 ± 2.9 kg, 25.0 ± 5.7 %BF) immediately pre- and post-exercise for eight weeks. Subjects participated in a supervised 4-day per week undulating periodized training program. At 0 and 8 weeks, subjects underwent DXA body composition analysis, and at 0 and 8 weeks underwent one repetition maximum (1RM) strength, muscle endurance, vertical jump, 5-10-5 agility run, and broad jump testing sessions. Data were analyzed using repeated measures ANOVA, and presented as mean ± SD changes from baseline after 60 days. No significant group x time interaction effects were observed among groups in changes in any variable (p > 0.05). A significant time effect was observed for body fat (WP: -2.0 ± 1.1 %BF; CP: -1.0 ± 1.6 %BF, p < 0.001), lean mass (WP: 1.5 ± 1.0 kg; CP: 1. 4 ± 1.0 kg, p < 0.001), fat mass (WP: -1.3 ± 1.2 kg; CP: -0.6 ± 1.4 kg, p < 0.001), leg press 1RM (WP: 88.7 ± 43.9 kg; CP: 90.0 ± 48.5 kg, p < 0.001), bench press 1RM (WP: 7.5 ± 4.6 kg; CP: 4.3 ± 4.5 kg, p = 0.01), vertical jump (WP: 4.1 ± 1.8 cm; CP: 3.5 ± 7.6 cm, p < 0.001), 5-10-5 (WP: -0.3 ± 0.2 sec; CP: -0.09 ± 0.42 sec, p < 0.001), and broad jump (WP: 10.4 ± 6.6 cm; CP: 12. 9 ± 7.1 cm, p < 0.001). The combination of a controlled undulating resistance training program with pre- and post-exercise protein supplementation is capable of inducing significant changes in performance and body composition. There does not appear to be a difference in the performance- enhancing effects between whey and casein protein

    Proceedings of the Thirteenth International Society of Sports Nutrition (ISSN) Conference and Expo

    No full text
    corecore