15 research outputs found

    Pseudorabies virus infection causes downregulation of Ligands for the activating NK cell receptor NKG2D

    Get PDF
    Herpesviruses display a complex and carefully balanced interaction with important players in the antiviral immune response of immunocompetent natural hosts, including natural killer (NK) cells. With regard to NK cells, this delicate balance is illustrated on the one hand by severe herpesvirus disease reported in individuals with NK cell deficiencies and on the other hand by several NK cell evasion strategies described for herpesviruses. In the current study, we report that porcine cells infected with the porcine alphaherpesvirus pseudorabies virus (PRV) display a rapid and progressive downregulation of ligands for the major activating NK cell receptor NKG2D. This downregulation consists both of a downregulation of NKG2D ligands that are already expressed on the cell surface of an infected cell and an inhibition of cell surface expression of newly expressed NKG2D ligands. Flow cytometry and RT-qPCR assays showed that PRV infection results in downregulation of the porcine NKG2D ligand pULBP1 from the cell surface and a very substantial suppression of mRNA expression of pULBP1 and of another potential NKG2D ligand, pMIC2. Furthermore, PRV-induced NKG2D ligand downregulation was found to be independent of late viral gene expression. In conclusion, we report that PRV infection of host cells results in a very pronounced downregulation of ligands for the activating NK cell receptor NKG2D, representing an additional NK evasion strategy of PRV

    Pseudorabies virus infection of epithelial cells leads to persistent but aberrant activation of the NF-kappa B pathway, inhibiting hallmark NF-kappa B-induced proinflammatory gene expression

    No full text
    The nuclear factor kappa B (NF-kappa B) is a potent transcription factor, activation of which typically results in robust proinflammatory signaling and triggering of fast negative feedback modulators to avoid excessive inflammatory responses. Here, we report that infection of epithelial cells, including primary porcine respiratory epithelial cells, with the porcine alphaherpesvirus pseudorabies virus (PRV) results in the gradual and persistent activation of NF-kappa B, illustrated by proteasome-dependent degradation of the inhibitory NF-kappa B regulator I kappa B and nuclear translocation and phosphorylation of the NF-kappa B subunit p65. PRVinduced persistent activation of NF-kappa B does not result in expression of negative feedback loop genes, like the gene for I kappa B alpha or A20, and does not trigger expression of prototypical proinflammatory genes, like the gene for tumor necrosis factor alpha (TNF-alpha) or interleukin-6 (IL-6). In addition, PRV infection inhibits TNF-alpha induced canonical NF-kappa B activation. Hence, PRV infection triggers persistent NF-kappa B activation in an unorthodox way and dramatically modulates the NF-kappa B signaling axis, preventing typical proinflammatory gene expression and the responsiveness of cells to canonical NF-kappa B signaling, which may aid the virus in modulating early proinflammatory responses in the infected host. IMPORTANCE The NF-kappa B transcription factor is activated via different key inflammatory pathways and typically results in the fast expression of several proinflammatory genes as well as negative feedback loop genes to prevent excessive inflammation. In the current report, we describe that infection of cells with the porcine alphaherpesvirus pseudorabies virus (PRV) triggers a gradual and persistent aberrant activation of NF-kappa B, which does not result in expression of hallmark proinflammatory or negative feedback loop genes. In addition, although PRV-induced NF-kappa B activation shares some mechanistic features with canonical NF-kappa B activation, it also shows remarkable differences; e.g., it is largely independent of the canonical I kappa B kinase (IKK) and even renders infected cells resistant to canonical NF-kappa B activation by the inflammatory cytokine TNF-alpha. Aberrant PRV-induced NF-kappa B activation may therefore paradoxically serve as a viral immune evasion strategy and may represent an important tool to unravel currently unknown mechanisms and consequences of NF-kappa B activation

    On-Slide Lambda Protein Phosphatase-Mediated Dephosphorylation of Fixed Samples

    No full text
    Protein phosphorylation is a ubiquitous post-translational modification that regulates a plethora of intracellular processes, making its analysis crucial for understanding intracellular dynamics. The commonly used methods, such as radioactive labeling and gel electrophoresis, do not provide information about subcellular localization. Immunofluorescence using phospho-specific antibodies and subsequent analysis via microscopy allows researchers to assess subcellular localization, but it typically lacks validation whether the observed fluorescent signal is phosphorylation specific. In this study, an on-slide dephosphorylation assay coupled with immunofluorescence staining using phospho-specific antibodies on fixed samples is proposed as a fast and simple approach to validate phosphorylated proteins in their native subcellular context. The assay was validated using antibodies against two different phosphorylated target proteins, connexin 43 phosphorylated at serine 373, and phosphorylated substrates of protein kinase A, with a dramatic reduction in the signal upon dephosphorylation. The proposed approach provides a convenient way to validate phosphorylated proteins without the need for additional sample preparation steps, reducing the time and effort required for analysis, while minimizing the risk of protein loss or alteration

    Alphaherpesvirus-induced activation of plasmacytoid dendritic cells depends on the viral glycoprotein gD and is inhibited by non-infectious light particles

    No full text
    Plasmacytoid dendritic cells (pDC) are important innate immune cells during the onset of viral infections as they are specialized in the production of massive amounts of antiviral type I interferon (IFN). Alphaherpesviruses such as herpes simplex virus (HSV) or pseudorabies virus (PRV) are double stranded DNA viruses and potent stimulators of pDC. Detailed information on how PRV activates porcine pDC is lacking. Using PRV and porcine primary pDC, we report here that PRV virions, so-called heavy (H-)particles, trigger IFNα production by pDC, whereas light (L-) particles that lack viral DNA and capsid do not. Activation of pDC requires endosomal acidification and, importantly, depends on the PRV gD envelope glycoprotein and O-glycosylations. Intriguingly, both for PRV and HSV-1, we found that L-particles suppress H-particle-mediated activation of pDC, a process which again depends on viral gD. This is the first report describing that gD plays a critical role in alphaherpesvirus-induced pDC activation and that L-particles directly interfere with alphaherpesvirus-induced IFNα production by pDC

    Pseudorabies virus US3-induced tunneling nanotubes contain stabilized microtubules, interact with neighboring cells via cadherins, and allow intercellular molecular communication

    No full text
    Tunneling nanotubes (TNTs) are long bridge-like structures that connect eukaryotic cells and mediate intercellular communication. We found earlier that the conserved alphaherpesvirus US3 protein kinase induces long cell projections that contact distant cells and promote intercellular virus spread. In this report, we show that the US3-induced cell projections constitute TNTs. In addition, we report that US3-induced TNTs mediate intercellular transport of information (e.g., green fluorescent protein [GFP]) in the absence of other viral proteins. US3-induced TNTs are remarkably stable compared to most TNTs described in the literature. In line with this, US3-induced TNTs were found to contain stabilized (acetylated and detyrosinated) microtubules. Transmission electron microscopy showed that virus particles are individually transported in membrane-bound vesicles in US3-induced TNTs and are released along the TNT and at the contact area between a TNT and the adjacent cell. Contact between US3-induced TNTs and acceptor cells is very stable, which correlated with a marked enrichment in adherens junction components beta-catenin and E-cadherin at the contact area. These data provide new structural insights into US3-induced TNTs and how they may contribute to intercellular communication and alphaherpesvirus spread. IMPORTANCE: Tunneling nanotubes (TNT) represent an important and yet still poorly understood mode of long-distance intercellular communication. We and others reported earlier that the conserved alphaherpesvirus US3 protein kinase induces long cellular protrusions in infected and transfected cells. Here, we show that US3-induced cell projections constitute TNTs, based on structural properties and transport of biomolecules. In addition, we report on different particular characteristics of US3-induced TNTs that help to explain their remarkable stability compared to physiological TNTs. In addition, transmission electron microscopy assays indicate that, in infected cells, virions travel in the US3-induced TNTs in membranous transport vesicles and leave the TNT via exocytosis. These data generate new fundamental insights into the biology of (US3-induced) TNTs and into how they may contribute to intercellular virus spread and communication

    The pseudorabies virus glycoprotein gE/gI complex suppresses type I interferon production by plasmacytoid dendritic cells

    No full text
    Plasmacytoid dendritic cells (pDC) play a central role in the antiviral immune response, both in the innate response and in shaping the adaptive response, mainly because of their ability to produce massive amounts of type I interferon (TIIFN). Here, we report that cells infected with the live attenuated Bartha vaccine strain of porcine alphaherpesvirus pseudorabies virus (PRV) trigger a dramatically increased TI-IFN response by porcine primary pDC compared to cells infected with wild-type PRV strains (Becker and Kaplan). Since Bartha is one of the relatively few examples of a highly successful alphaherpesvirus vaccine, identification of factors that may contribute to its efficacy may provide insights for the rational design of other alphaherpesvirus vaccines. The Bartha vaccine genome displays several mutations compared to the genome of wild-type PRV strains, including a large deletion in the unique short (US) region, encompassing the glycoprotein E (gE), gI, US9, and US2 genes. Using recombinant PRV Becker strains harboring the entire Bartha US deletion or single mutations in the four affected US genes, we demonstrate that the absence of the viral gE/gI complex contributes to the observed increased IFN- alpha response. Furthermore, we show that the absence of gE leads to an enhanced extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation in pDC, which correlates with a higher TI-IFN production by pDC. In conclusion, the PRV Bartha vaccine strain triggers strongly increased TI-IFN production by porcine pDC. Our data further indicate that the gE/gI glycoprotein complex suppresses TI-IFN production by pDC, which represents the first alphaherpesvirus factor that suppresses pDC activity. IMPORTANCE: Sveral aphaherpesviruses, including herpes simpex virus, still lack effective vaccines. However, the highly successful Bartha vaccine has contributed substantially to eradication of the porcine alphaherpesvirus pseudorabies virus (PRV) in several countries. The impact of Bartha on the immune response is still poorly understood. Type I interferon (TI-IFN)-producing plasmacytoid dendritic cells (pDC) may play an important role in vaccine development. Here, we show that Bartha elicits a dramatically increased type I interferon (TI-IFN) response in primary porcine pDC compared to wild-type strains. In addition, we found that the gE/gI complex, which is absent in Bartha, inhibits the pDC TI-IFN response. This is the first description of an immune cell type that is differentially affected by Bartha versus wild-type PRV and is the first report describing an alphaherpesvirus protein that inhibits the TI-IFN response by pDC. These data may therefore contribute to the rational design of other alphaherpesvirus vaccines

    The attenuated pseudorabies virus vaccine strain Bartha hyperactivates plasmacytoid dendritic cells by generating large amounts of cell-free virus in infected epithelial cells

    No full text
    The pseudorabies virus (PRV) vaccine strain Bartha has been and still is critical in the eradication of PRV in numerous countries. However, little is known about how this vaccine strain interacts with host cells and the host immune system. Pseudorabies virus (PRV) is a porcine alphaherpesvirus and the causative agent of Aujeszky's disease. Successful eradication campaigns against PRV have largely relied on the use of potent PRV vaccines. The live attenuated Bartha strain, which was produced by serial passaging in cell culture, represents one of the hallmark PRV vaccines. Despite the robust protection elicited by Bartha vaccination, very little is known about the immunogenicity of the Bartha strain. Previously, we showed that Bartha-infected epithelial cells trigger plasmacytoid dendritic cells (pDC) to produce much higher levels of type I interferons than cells infected with wild-type PRV. Here, we show that this Bartha-induced pDC hyperactivation extends to other important cytokines, including interleukin-12/23 (IL-12/23) and tumor necrosis factor alpha (TNF-alpha) but not IL-6. Moreover, Bartha-induced pDC hyperactivation was found to be due to the strongly increased production of extracellular infectious virus (heavy particles [H-particles]) early in infection of epithelial cells, which correlated with a reduced production of noninfectious light particles (L-particles). The Bartha genome is marked by a large deletion in the US region affecting the genes encoding US7 (gI), US8 (gE), US9, and US2. The deletion of the US2 and gE/gI genes was found to be responsible for the observed increase in extracellular virus production by infected epithelial cells and the resulting increased pDC activation. The deletion of gE/gI also suppressed L-particle production. In conclusion, the deletion of US2 and gE/gI in the genome of the PRV vaccine strain Bartha results in the enhanced production of extracellular infectious virus in infected epithelial cells and concomitantly leads to the hyperactivation of pDC. IMPORTANCE The pseudorabies virus (PRV) vaccine strain Bartha has been and still is critical in the eradication of PRV in numerous countries. However, little is known about how this vaccine strain interacts with host cells and the host immune system. Here, we report the surprising observation that Bartha-infected epithelial porcine cells rapidly produce increased amounts of extracellular infectious virus compared to wild-type PRV-infected cells, which in turn potently stimulate porcine plasmacytoid dendritic cells (pDC). We found that this phenotype depends on the deletion of the genes encoding US2 and gE/gI. We also found that Bartha-infected cells secrete fewer pDC-inhibiting light particles (L-particles), which appears to be caused mainly by the deletion of the genes encoding gE/gI. These data generate novel insights into the interaction of the successful Bartha vaccine with epithelial cells and pDC and may therefore contribute to the development of vaccines against other (alphaherpes)viruses

    Alphaherpesvirus US3 protein-mediated inhibition of the m6A mRNA methyltransferase complex

    No full text
    Chemical modifications of mRNA, the so-called epitranscriptome, represent an additional layer of post-transcriptional regulation of gene expression. The most common epitranscriptomic modification, N6-methyladenosine (m6A), is generated by a multi-subunit methyltransferase complex. We show that alphaherpesvirus kinases trigger phosphorylation of several components of the m6A methyltransferase complex, including METTL3, METTL14, and WTAP, which correlates with inhibition of the complex and a near complete loss of m6A levels in mRNA of virus-infected cells. Expression of the viral US3 protein is necessary and sufficient for phosphorylation and inhibition of the m6A methyltransferase complex. Although m6A methyltransferase complex inactivation is not essential for virus replication in cell culture, the consensus m6A methylation motif is under-represented in alphaherpesvirus genomes, suggesting evolutionary pressure against methylation of viral transcripts. Together, these findings reveal that phosphorylation can be associated with inactivation of the m6A methyltransferase complex, in this case mediated by the viral US3 protein
    corecore