2,007 research outputs found

    Particle Number Fluctuations in Canonical Ensemble

    Get PDF
    Fluctuations of charged particle number are studied in the canonical ensemble. In the infinite volume limit the fluctuations in the canonical ensemble are different from the fluctuations in the grand canonical one. Thus, the well-known equivalence of both ensembles for the average quantities does not extend for the fluctuations. In view of a possible relevance of the results for the analysis of fluctuations in nuclear collisions at high energies, a role of the limited kinematical acceptance is studied.Comment: 13 pages, 9 figures, LaTe

    Kinetic equation with exact charge conservation

    Get PDF
    We formulate the kinetic master equation describing the production of charged particles which are created or destroyed only in pairs due to the conservation of their Abelian charge.Our equation applies to arbitrary particle multiplicities and reproduces the equilibrium results for both canonical (rare particles) and grand canonical (abundant particles) systems. For canonical systems, the equilibrium multiplicity is much lower and the relaxation time is much shorter than the naive extrapolation from the grand canonical ensemble results. Implications for particle chemical equilibration in heavy-ion collisions are discussed.Comment: 4 Pages in RevTe

    Fluctuations, strangeness and quasi-quarks in heavy-ion collisions from lattice QCD

    Get PDF
    We report measurements of diagonal susceptibilities for the baryon number, chi_B, electrical charge, chi_Q, third component of isospin, chi_I, strangeness, chi_S, and hypercharge, chi_Y, as well as the off-diagonal chi_BQ, chi_BY, chi_BS, etc. We show that the ratios of susceptibilities in the high temperature phase are robust variables, independent of lattice spacing, and therefore give predictions for experiments. We also investigate strangeness production and flavour symmetry breaking matrix elements at finite temperature. Finally, we present evidence that in the high temperature phase of QCD the different flavour quantum numbers are excited in linkages which are exactly the same as one expects from quarks. We present some investigations of these quark-like quasi particles

    Highlights of the Beam Energy Scan from STAR

    Full text link
    The first part of the beam energy scan (BES) program at RHIC was successfully completed in the years 2010 and 2011. First STAR results from particle yield measurements are in good agreement with previously published data from SPS and AGS experiments whereas other results like azimuthal HBT and K/πK/\pi event-by-event fluctuations differ at some energies. In addition, new observations like the centrality dependence of chemical freeze-out parameters (TchT_{\rm{ch}} and μB\mu_{B}) or the smoothly increasing difference with decreasing energy in the elliptic flow v2v_{2} between particles and corresponding anti-particles, are discussed.Comment: CPOD 2011 proceedings, 5 pages, 4 figure

    Dynamical interpretation of chemical freeze-out in heavy ion collisions

    Get PDF
    It is demonstrated that there exists a direct correlation between chemical freeze-out point and the softest point of the equation of state where the pressure divided by the energy density, p(ϵ)/ϵp(\epsilon)/\epsilon, has a minimum. A dynamical model is given as an example where the passage of the softest point coincides with the condition for chemical freeze-out, namely an average energy per hadron \approx 1 GeV. The sensitivity of the result to the equation of state used is discussed.Comment: 10 pages, 2 figure

    The Tsallis Distribution in Proton-Proton Collisions at s\sqrt{s} = 0.9 TeV at the LHC

    Full text link
    The Tsallis distribution has been used recently to fit the transverse momentum distributions of identified particles by the STAR and PHENIX collaborations at the Relativistic Heavy Ion Collider and by the ALICE and CMS collaborations at the Large Hadron Collider. Theoretical issues are clarified concerning the thermodynamic consistency of the Tsallis distribution in the particular case of relativistic high energy quantum distributions. An improved form is proposed for describing the transverse momentum distribution and fits are presented together with estimates of the parameter qq and the temperature TT.Comment: 15 pages, 7 figures. arXiv admin note: substantial text overlap with arXiv:1106.340

    Non-extensivity of the QCD pT spectra

    Full text link
    We try to establish a connection between the hadronic distributions, in proton-proton collisions at very high transverse momentum pTp_{\mathrm{T}}, obtained via perturbative QCD and the Tsallis non extensive statistics. Our motivation is that while the former is expected to be valid at extremely high momentum, due to asymptotic freedom, the latter has been very successful in describing experimental spectra over a wide range of momentum. Matching the non extensive statistics with the asymptotic pTp_{\mathrm{T}} behaviour expected from QCD leads to the value of q=1.25q=1.25.Comment: 4 page
    corecore