1,433 research outputs found

    On Quantum Algorithms

    Get PDF
    Quantum computers use the quantum interference of different computational paths to enhance correct outcomes and suppress erroneous outcomes of computations. In effect, they follow the same logical paradigm as (multi-particle) interferometers. We show how most known quantum algorithms, including quantum algorithms for factorising and counting, may be cast in this manner. Quantum searching is described as inducing a desired relative phase between two eigenvectors to yield constructive interference on the sought elements and destructive interference on the remaining terms.Comment: 15 pages, 8 figure

    Improved Quantum Communication Complexity Bounds for Disjointness and Equality

    Get PDF
    We prove new bounds on the quantum communication complexity of the disjointness and equality problems. For the case of exact and non-deterministic protocols we show that these complexities are all equal to n+1, the previous best lower bound being n/2. We show this by improving a general bound for non-deterministic protocols of de Wolf. We also give an O(sqrt{n}c^{log^* n})-qubit bounded-error protocol for disjointness, modifying and improving the earlier O(sqrt{n}log n) protocol of Buhrman, Cleve, and Wigderson, and prove an Omega(sqrt{n}) lower bound for a large class of protocols that includes the BCW-protocol as well as our new protocol.Comment: 11 pages LaTe

    Depth-Independent Lower bounds on the Communication Complexity of Read-Once Boolean Formulas

    Full text link
    We show lower bounds of Ω(n)\Omega(\sqrt{n}) and Ω(n1/4)\Omega(n^{1/4}) on the randomized and quantum communication complexity, respectively, of all nn-variable read-once Boolean formulas. Our results complement the recent lower bound of Ω(n/8d)\Omega(n/8^d) by Leonardos and Saks and Ω(n/2Ω(dlogd))\Omega(n/2^{\Omega(d\log d)}) by Jayram, Kopparty and Raghavendra for randomized communication complexity of read-once Boolean formulas with depth dd. We obtain our result by "embedding" either the Disjointness problem or its complement in any given read-once Boolean formula.Comment: 5 page

    Circular 104

    Get PDF

    Identification and Removal of Noise Modes in Kepler Photometry

    Full text link
    We present the Transiting Exoearth Robust Reduction Algorithm (TERRA) --- a novel framework for identifying and removing instrumental noise in Kepler photometry. We identify instrumental noise modes by finding common trends in a large ensemble of light curves drawn from the entire Kepler field of view. Strategically, these noise modes can be optimized to reveal transits having a specified range of timescales. For Kepler target stars of low photometric noise, TERRA produces ensemble-calibrated photometry having 33 ppm RMS scatter in 12-hour bins, rendering individual transits of earth-size planets around sun-like stars detectable as ~3 sigma signals.Comment: 18 pages, 7 figures, submitted to PAS

    Substituting a qubit for an arbitrarily large number of classical bits

    Full text link
    We show that a qubit can be used to substitute for an arbitrarily large number of classical bits. We consider a physical system S interacting locally with a classical field phi(x) as it travels directly from point A to point B. The field has the property that its integrated value is an integer multiple of some constant. The problem is to determine whether the integer is odd or even. This task can be performed perfectly if S is a qubit. On the otherhand, if S is a classical system then we show that it must carry an arbitrarily large amount of classical information. We identify the physical reason for such a huge quantum advantage, and show that it also implies a large difference between the size of quantum and classical memories necessary for some computations. We also present a simple proof that no finite amount of one-way classical communication can perfectly simulate the effect of quantum entanglement.Comment: 8 pages, LaTeX, no figures. v2: added result on entanglement simulation with classical communication; v3: minor correction to main proof, change of title, added referenc

    Fast quantum algorithm for numerical gradient estimation

    Full text link
    Given a blackbox for f, a smooth real scalar function of d real variables, one wants to estimate the gradient of f at a given point with n bits of precision. On a classical computer this requires a minimum of d+1 blackbox queries, whereas on a quantum computer it requires only one query regardless of d. The number of bits of precision to which f must be evaluated matches the classical requirement in the limit of large n.Comment: additional references and minor clarifications and corrections to version

    Classical and quantum fingerprinting with shared randomness and one-sided error

    Full text link
    Within the simultaneous message passing model of communication complexity, under a public-coin assumption, we derive the minimum achievable worst-case error probability of a classical fingerprinting protocol with one-sided error. We then present entanglement-assisted quantum fingerprinting protocols attaining worst-case error probabilities that breach this bound.Comment: 10 pages, 1 figur

    Singlet states and the estimation of eigenstates and eigenvalues of an unknown Controlled-U gate

    Get PDF
    We consider several problems that involve finding the eigenvalues and generating the eigenstates of unknown unitary gates. We first examine Controlled-U gates that act on qubits, and assume that we know the eigenvalues. It is then shown how to use singlet states to produce qubits in the eigenstates of the gate. We then remove the assumption that we know the eigenvalues and show how to both find the eigenvalues and produce qubits in the eigenstates. Finally, we look at the case where the unitary operator acts on qutrits and has eigenvalues of 1 and -1, where the eigenvalue 1 is doubly degenerate. The eigenstates are unknown. We are able to use a singlet state to produce a qutrit in the eigenstate corresponding to the -1 eigenvalue.Comment: Latex, 10 pages, no figure

    Exact quantum query complexity of EXACTk,ln\rm{EXACT}_{k,l}^n

    Full text link
    In the exact quantum query model a successful algorithm must always output the correct function value. We investigate the function that is true if exactly kk or ll of the nn input bits given by an oracle are 1. We find an optimal algorithm (for some cases), and a nontrivial general lower and upper bound on the minimum number of queries to the black box.Comment: 19 pages, fixed some typos and constraint
    corecore